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Abstract—This paper investigates the effectiveness of single
large language models (LLMs) versus multi-agent systems in
generating program code. Using AutoGen, we examine whether
assigning detailed role descriptions enhances code quality in both
setups. Key metrics such as lines of code, cyclomatic complexity,
runtime, memory usage, and maintainability index are assessed.
Python code generated by both systems is compared to human-
written solutions across varying difficulty levels. Results show
multi-agent systems hold potential for improving code quality,
though the impact of detailed role descriptions warrants further
exploration. Of the LLM-generated codes, 11 (46%) successfully
solved the tasks, while 5 (21%) required minimal modifications,
saving 2.9% to 17.9% of time compared to coding from scratch.

Index Terms—large language models, LLMs, code generation,
multi-agent systems, natural language processing, NLP

I. INTRODUCTION

Generative AI has become increasingly integrated into daily
life, particularly in text generation, where large language mod-
els (LLMs) replicate human-like conversations and provide in-
stant support [1]–[4]. For example, ChatGPT1, one of the most
widely used platforms, quickly gained popularity, amassing
over a million users within days of its release [5]. Beyond
customer service and personal assistance, LLMs have also
expanded into coding, transforming how programming tasks
are approached [6], [7]. Integrated Development Environments
(IDEs) and unit testing further enhance this by streamlining
workflows and making coding more accessible to both experts
and novices [8].

Despite these advancements, AI-powered coding solutions
still face challenges, such as producing correct, efficient, and
maintainable code, especially for less experienced users [9]–
[12].

To address these limitations, first multi-agent frameworks
for LLMs aim to tackle programming tasks by assigning
specialized roles to different agents. AutoGen [13], for ex-
ample, stands out for its flexibility, allowing developers to
program agents using natural language or code across diverse
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domains. Other notable frameworks include MetaGPT [14],
GameGPT [15], ChatDev [16], and MAGIS [17].

However, research has largely centered around metrics for
code correctness, such as pass@k [18]–[20] and compre-
hensive comparisons between AI- and human-generated code
remain underexplored, particularly within multi-agent systems.

Consequently, in this paper we conduct a thorough evalua-
tion of Python code generated by multi-agent systems of LLMs
versus single LLMs. We assess efficiency and maintainability
using metrics such as lines of code, cyclomatic complexity,
runtime, memory usage, Halstead complexity, and maintain-
ability index. Additionally, we compare LLM-generated code
against professional human-written solutions, evaluating prob-
lems across three difficulty levels: easy, medium, and hard.
Our analyzed systems leverage AutoGen [13] to iteratively
improve code quality through execution and testing. We also
examined whether providing a detailed role description to
both single LLMs and multi-agent systems leads to improved
code quality compared to merely assigning the role without
additional detail.

In the next section, we will give an overview of related
work. Section III will outline our experimental setup, followed
by experiments and results in Section IV. Finally, Section V
will conclude with future directions.

II. RELATED WORK

Various studies on program code generation with LLMs
have been carried out with single-agent setups. For exam-
ple, Codex [19], based on GPT-3.0, was fine-tuned using
GitHub code to generate Python code from natural language
instructions. [19] tested Codex on their HumanEval dataset
and achieved a pass@1 of 28.8%, outperforming GPT-3.0 and
GPT-J. [21] evaluated Codex-based GitHub Copilot, showing
it produced valid code 91.5% of the time, with a correctness
rate of 28.7%. In a later study, [20] compared Copilot,
CodeWhisperer, and ChatGPT, with ChatGPT generating the
most valid (93.3%) and correct (65.2%) code. [18] introduced
EvalPlus and HumanEval+, an expanded dataset to assess
26 AI models, where GPT-4 was the top performer (76.2%
pass@1). Additionally, DeepMind’s AlphaCode ranked in the
top 54.3% of coding competition participants, and [22] found
that GitHub Copilot’s best performance was in Java with



57% correctness on LeetCode problems. [23] compare the
correctness, efficiency, and maintainability of human- and
LLM-generated code using metrics like time, space complex-
ity, and maintainability indices. GitHub Copilot solved 50%
of LeetCode problems, outperforming other models such as
BingAI Chat and GPT-3.5, while 20.6% of LLM-generated
codes were correct, and 8.7% required minimal modifications
to be correct.

Several multi-agent frameworks for LLMs exist. A good
overview is given in [24]. AutoGen [13] stands out due to
its extensive customization capabilities, allowing developers to
create agents that can be programmed through both natural lan-
guage and coding. Code execution is possible amongst many
other functions. This adaptability makes it suitable for a wide
range of domains, from technical fields like programming and
mathematics to consumer-oriented areas such as entertainment.
Consequently, we used AutoGen for the implementation of our
LLM-based multi-agent scenarios.

MetaGPT [14] employs a multi-agent system of LLM
agents, each assigned distinct roles, to tackle Python pro-
gramming tasks, outperforming prior systems like ChatDev.
GameGPT [15], released in December 2023, similarly uses
specialized agents for game development, emphasizing quality
through critic feedback. ChatDev [16] operates as a virtual
software company, using LLM agents with memory retention
and self-reflection for code generation. MAGIS [17] focuses
on resolving GitHub issues with superior collaboration.

Despite the success of MetaGPT, ChatDev, GameGPT,
and MAGIS, these frameworks rely on predefined roles and
the waterfall model, which limits flexibility. In contrast, we
propose a more adaptable approach, defining LLM agent roles
based on specific tasks, allowing for more flexibility in real-
world applications and non-specialized teams.

III. EXPERIMENTAL SETUP

In this section, we will first describe the experimental setup
used to evaluate program code generation with multi-agent
system and single LLM setups. Additionally, we will present
the coding problems selected for evaluation and the use of
GPT-4o mini as the primary model in our LLM setups.

A. Overview of our Analyzed LLM Setups

Our goal was to explore whether a multi-agent system
of LLM agents, each assigned a role similar to that of a
human developer team, outperforms single LLMs. Since both
single LLMs and multi-agent systems can be given varying
levels of detail about their roles, we also assessed whether
providing a detailed role description improves code quality
compared to simply assigning the role. A detailed description
could guide the agents, but it might also limit their flexibility.
Consequently, to evaluate code quality, we tested the following
setups:

• Single LLM without role description
• Single LLM with role description
• Multi-agent system without role description
• Multi-agent system with role description

Figure 1 and Figure 2 demonstrate our investigated multi-
agent systems and the single LLMs.

1) Multi-Agent System Setup: As shown in Figure 2, our
multi-agent system setup consists of a collaborative multi-
agent team where each agent has a clear responsibility and
communicates with the others to improve and refine the
solution:

• Mathematician: This agent is responsible for applying
mathematical theories and providing mathematical mod-
els to help solve the problem. It communicates with other
agents, such as the Algorithm Engineer, but does not write
any code or design algorithms. It focuses purely on the
mathematical aspect of the problem.

• Algorithm Engineer: The Algorithm Engineer designs
the algorithm based on the mathematical model provided
by the Mathematician. It does not write the code but
creates a logical solution using established algorithm
patterns and structures. If the algorithm is insufficient,
it can request improvements from the Mathematician.

• Python Developer: This agent is responsible for writing
the actual Python code. It implements the algorithm
provided by the Algorithm Engineer and focuses on
writing clean, efficient, and modular Python code. If
the code needs to be improved, the Python Developer
requests changes from the Algorithm Engineer.

• Code Executor: The Code Executor runs the Python
code created by the Python Developer. It checks whether
the output is correct by comparing it with the expected
results. If the output is wrong, the Code Executor requests
an updated mathematical model from the Mathematician
to improve the code. If the output is correct, it terminates
the process by sending the final source code.

In the multi-agent system with role description, each LLM
agent is prompted to assume the roles of the mathematician,
algorithm engineer, developer, and code executor, along with
detailed descriptions of their respective tasks. In the multi-
agent system without role description, each LLM agent is
instructed to perform its designated tasks without any detailed
guidance.

2) Single LLM Setup: As shown in Figure 2, in our single
LLM setup, only one single LLM agent is responsible for the
program code generation.

In the single LLM with role description, the single LLM
agent is prompted to assume the roles of the mathematician,
algorithm engineer, developer, and code executor, along with
detailed descriptions of their respective tasks. In the single
LLM without role description, the single LLM agent is in-
structed to perform its designated tasks without any detailed
guidance.

B. Coding Problems

LeetCode is an online platform for improving coding skills,
supporting multiple programming languages like Java, Python,
and C++ [22], [25]. It is popular among job seekers and coding
enthusiasts for technical interviews and coding competitions.
The platform offers nearly 3,000 problems in six categories



Fig. 1: Multi-agent system for program code generation to solve the LeetCode problems.

Fig. 2: Single-agent LLM for program code generation to solve
the LeetCode problems.

(algorithms, database, Pandas, JavaScript, Shell, concurrency)
and three difficulty levels (easy, medium, hard). Each coding
problem on LeetCode includes a (1) task description, (2) input-
output examples, and (3) constraints, such as variable ranges.
After users submit their code, LeetCode reports runtime and
memory usage, and if the code is not executable, an error
message is displayed.

As shown in Table I, for our experiments we selected six
LeetCode algorithm coding problems in Python: two easy, two
medium, and two hard. The algorithm category was chosen
to evaluate efficiency and maintainability, as poor solutions
often result in high memory usage and difficult-to-understand
code. To minimize overlap with AI training data, we used
the latest coding problems from LeetCode. For comparison,
we selected the highest-rated, human-generated Python code
from LeetCode, written by expert programmers.

C. GPT-4o mini

For our experiments, we used GPT-4o, an optimized version
of GPT-4, which processes up to 128k tokens more efficiently2.
It handles multimodal input, including text and images, for
tasks like image interpretation. Although no specific studies
on its use in program code generation exist for GPT-4o mini,
GPT-4 was the top performer in the program code generation
evaluation of 26 popular LLMs conducted by [18].

IV. EXPERIMENTS AND RESULTS

In this section, we will begin by analyzing which generated
program codes are correct, meaning they effectively solve
the corresponding coding problems. Next, we will assess the
quality of the correct program codes using our evaluation
criteria: lines of code, cyclomatic complexity, time complexity,
space complexity, runtime, memory usage, and maintainability
index. Finally, we will identify which of the incorrect program
codes—due to their maintainability and proximity to correct
program code—have the potential to be easily modified man-
ually and then used quickly and without much effort to solve
the corresponding problems.

A. Correct Solutions

Table II demonstrates which generated program codes for
our six tasks were both executable and correct (indicated
with ✓), i.e. did solve the coding problem. The entry “—”
indicates program code which was incorrect, i.e. did not solve
the coding problem.

While the program codes generated by all our 4 analyzed
LLM setups are executable, we observe that only 11 (46%)
of the 24 LLM-generated program codes are correct. Out
of our 6 programming tasks, our single LLM with role
description (single (roles)), our multi-agent system without
role description (multi (no roles)) and our multi-agent system
with role description (multi (roles)) were able to generate

2https://platform.openai.com/docs/models/gpt-4o-mini



TABLE I: Selected Coding Problems for our Evaluation

# Coding Problem Difficulty Level

1 Max Pair Sum in an Array Easy
2 Faulty Keyboard Easy
3 Minimum Absolute Difference Between Elements With Constraint Medium
4 Double a Number Represented as a Linked List Medium
5 Apply Operations to Maximize Score Hard
6 Maximum Elegance of a K-Length Subsequence Hard

TABLE II: Correct Solutions.

easy medium hard total
#1 #2 #3 #4 #5 #6

single (no roles) ✓ ✓ — — — — 2
single (roles) ✓ ✓ ✓ — — — 3
multi (no roles) ✓ ✓ ✓ — — — 3
multi (roles) ✓ ✓ — ✓ — — 3
human ✓ ✓ ✓ ✓ ✓ ✓ 6

3 correct program codes (50%) in total. Our single LLM
without role description (single (no roles)) produced only
2 correct program codes (33%). Program codes written by
human programmers (human) are consistently correct, regard-
less of problem difficulty.

All 4 LLM setups generated correct code for easy problems.
However, none successfully solved the 2 hard coding prob-
lems. The single (roles), multi (no roles), and multi (roles)
setups each solved 1 medium coding problem. Overall, the
multi-agent systems show potential, but detailed role descrip-
tions did not consistently enhance performance across problem
difficulties.

B. Lines of Code

Table III shows the number of code lines in the correct
11 program codes which solve the coding problem plus the
number of code lines in our human-written reference program
codes (human).

TABLE III: Lines of Code.

easy medium hard
#1 #2 #3 #4 #5 #6

single (no roles) 16 8 — — — —
single (roles) 13 8 14 — — —
multi (no roles) 14 8 13 — — —
multi (roles) 24 8 — 41 — —
human 9 7 13 7 43 16
best vs. human (∆ in %) -31 -13 0 -486 — —

None of our LLM setups was able to solve the coding
problem with code that contains less lines of code than human.
However, for task#3, the program code produced by multi
(no roles) matched the number of lines of code in the human
solution, demonstrating comparable code compactness in that
specific case. Additionally, for task#2, all four LLM setups
produced code that was only one line longer than the reference
solution. However, the correct code generated by multi (roles)
is nearly six times longer than the code produced by human.

C. Cyclomatic Complexity

Table IV presents the cyclomatic complexity of the 11 cor-
rect program codes generated by the LLM setups, alongside
the cyclomatic complexity of the human-written reference
codes (human). Cyclomatic complexity measures the number
of independent paths through the code, with higher values
indicating lower code quality.

TABLE IV: Cyclomatic Complexity.

easy medium hard
#1 #2 #3 #4 #5 #6

single (no roles) 6 3 — — — —
single (roles) 6 3 6 — — —
multi (no roles) 6 3 6 — — —
multi (roles) 10 3 — 10 — —
human 3 2 5 4 42 16
best vs. human (∆ in %) -50 -50 -20 -150 — —

The results show that the cyclomatic complexity is consistent
across all LLM setups, except for multi (roles) in task #1.
None of the LLM setups generated code with lower cyclomatic
complexity than the human reference.

D. Time Complexity

Table V illustrates the time complexity in the 11 correct
program codes plus the time complexity in our human-written
reference program codes (human). The time complexity quan-
tifies the upper bound of time needed by an algorithm as a
function of the input [26]. The lower the order of the function,
the better the complexity.

TABLE V: Time Complexity.

easy medium hard
#1 #2 #3 #4 #5 #6

single (no roles) nlogn n2 — — — —
single (roles) nlogn n2 n — — —
multi (no roles) nlogn n2 n — — —
multi (roles) nlogn n2 — n — —
human nm kn nlogn n nlogn nlogn
best vs. human (h) LLM h LLM — h h

The results indicate that time complexity remains consis-
tent across all LLM setups. Among the 11 correct program
codes, 6 codes (36%) from an LLM setup exhibit lower time
complexity than the human reference. In 2 cases (18%), the
human-written code outperforms the LLM-generated code in
terms of time complexity. One LLM-generated code (9%)—
multi (roles)—match the human code in time complexity.



E. Space Complexity

Table VI presents the space complexity of the 11 correct
LLM-generated program codes, alongside the space complex-
ity of the human-written reference codes (human). Like time
complexity, space complexity measures the upper bound of
memory required by an algorithm as a function of input
size [27]. Lower-order functions indicate better complexity.

TABLE VI: Space Complexity.

easy medium hard
#1 #2 #3 #4 #5 #6

single (no roles) n n — — — —
single (roles) n n n — — —
multi (no roles) n n n — — —
multi (roles) n n — n — —
human n n n n n n
best vs. human (h) — — — h h h

The results for time complexity indicate that cyclomatic
complexity remains consistent across all LLM setups. All
LLM setups perform equally, each maintaining O(n). This
consistency is also observed in the human reference code.

F. Runtime

Table VII demonstrates the runtime of the 11 correct pro-
gram codes plus the runtime of our human-written reference
program codes (human) on LeetCode in milliseconds. The
lower the runtime of a program code, the better.

TABLE VII: Runtime.

easy medium hard
#1 #2 #3 #4 #5 #6

single (no roles) 118 36 — — — —
single (roles) 107 41 984 — — —
multi (no roles) 123 33 924 — — —
multi (roles) 120 45 — 309 — —
human 114 47 961 235 5k 1k
best vs. human (∆ in %) +6 +30 +4 -21 — —

Out of the 11 correct program codes, 6 cases (55%) feature
an LLM setup that produced code with a shorter runtime
than the human reference. In contrast, 5 LLM-generated codes
(45%) are outperformed by human in this metric. Comparing
the LLM setups demonstrates that multi (no roles) delivers the
best performance in 2 tasks (#2 and #3), while single (roles)
excels in 1 task (#1). However, single (no roles) and multi
(roles) fail to surpass any of the other LLM setups.

G. Memory Usage

Table VIII lists the memory usage of the 11 correct program
codes plus the memory usage of our human-written reference
program codes (human) on LeetCode in megabytes. The lower
the memory usage of a program code, the better.

The results indicate that memory usage is consistent across
the program codes generated by all LLM setups and the human
reference. None of the LLM-generated codes exhibits lower
memory usage than the human-written code. In terms of this
metric, no particular LLM setup demonstrates superior or
inferior performance.

easy medium hard
#1 #2 #3 #4 #5 #6

single (no roles) 17 17 — — — —
single (roles) 17 17 32 — — —
multi (no roles) 17 17 32 — — —
multi (roles) 17 17 — 21 — —
human 17 17 32 21 40 53
best vs. human (∆ in %) 0 0 0 0 — —

TABLE VIII: Memory Usage.

H. Maintainability Index

Table IX demonstrates the maintainability index of the
11 correct program codes along with the maintainability index
of our human-written reference program codes (human). A
higher maintainability index indicates better code quality.

TABLE IX: Maintainability Index.

easy medium hard
#1 #2 #3 #4 #5 #6

single (no roles) 54 64 — — — —
single (roles) 56 64 55 — — —
multi (no roles) 55 63 56 — — —
multi (roles) 48 63 — 42 — —
human 61 64 56 63 39 54
best vs. human (∆ in %) -8 — 0 -33 — —

Examining the results of the maintainability index, we see
that while human-generated code consistently performs best,
both single (no roles) and single (roles) reach a comparable
score of 64 for task #2. multi (no roles) matches the human
result for task #3 (56). However, multi (roles) falls short in
maintainability across all tasks.

I. Potential of Incorrect LLM-Generated Program Code

After analyzing the 11 correct program codes, our goal was
to evaluate which of the 13 incorrect program codes have the
potential to be easily modified manually and then used quickly
and without much effort to solve the corresponding coding
problems. To ensure a fair comparison that is independent of
programmers’ experience, we report the TTC using Halstead’s
estimates of the implementation time, which is only dependent
on the operators and operands in the program code—not on
the expertise of a programmer. Consequently, to estimate the
TTC in seconds, we developed the following formula:

TTC = |Tcorrect − Tincorrect|+ Tmaintain

where Tcorrect is Halstead’s implementation time [28,
pp. 57–59] of the correct program code in seconds and
Tincorrect is Halstead’s implementation time [28, pp. 57–59] of
the incorrect program code in seconds. The absolute difference
is employed to account for scenarios where Tcorrect may
be lower than Tincorrect due to the necessity of removing
parts of the program code to achieve the correct version.
As Healstead’s implementation time only addresses the time
for the effort of implementing and understanding the program
based on the operators and operands but not time to maintain
the code—which is crucial for correcting program code—we



TABLE X: Potential of Incorrect LLM-generated Program Code.

Estimated time to
program in seconds

# MI Tincorrect | Tcorrect TTC ∆ Tcorrect–TTC (%)

multi (no roles) 3 55 1,054 | 881 1,046 –15.74
single (no roles) 4 55 669 | 685 581 +17.93
single (roles) 4 55 646 | 663 539 +23.11
multi (no roles) 4 55 699 | 714 585 +22.04
single (no roles) 5 48 1,694 | 6,270 6,384 –1.79
single (roles) 5 54 1,296 | 6,270 6,082 +3.10
multi (no roles) 5 54 1,245 | 6,270 6,092 +2.93
multi (roles) 5 44 2,885 | 6,270 7,129 –12.05
single (no roles) 6 49 2,204 | 1,341 3,179 –57.82
single (roles) 6 46 3,320 | 3,425 3,954 –13.38
multi (no roles) 6 48 1,685 | 1,341 2,158 –37.85
multi (roles) 6 52 1,849 | 1,341 2,244 –40.23

additionally calculated the time to maintain the program with
the help of the maintainability index MI. The MI is based on
lines of code, cyclomatic complexity and Halstead’s volume.
Tmaintain in seconds is estimated using the following formula:

Tmaintain =
Tincorrect

MI/100
− Tincorrect

where MI represents the maintainability index, which
ranges from 0 to 100, as referenced in [29]. To normalize MI
to a scale from 0 to 1, it is divided by 100. This adjustment
allows Tincorrect to be multiplied by a factor that increases as
the maintainability of the program code decreases.

Table X demonstrates the MI, Tincorrect, Tcorrect, TTC as
well as the relative difference between Tcorrect and TTC (∆
Tcorrect–TTC (%)) for our 13 incorrect program codes and
their corresponding correct program codes. We observe that
for 5 program codes TTC < Tcorrect, i.e. the time to correct
(TTC) the incorrect program code takes less time than the
implementation time of the correct program code Tcorrect.

For these 5 program codes, time savings range from 2.93%
to 23.11% when correcting the LLM-generated program code
instead of developing it from scratch. Specifically, for task #4,
the code produced by single (no roles) has the lowest TTC,
making it 23% faster than implementing the correct code from
scratch. In task #5, the code generated by single (roles) also
achieves the lowest TTC, being 3% faster than creating the
correct code from the ground up. For the other tasks and LLM
setups, Tcorrect is lower than TTC, indicating that it makes
more sense to manually implement the correct program from
scratch.

V. CONCLUSION AND FUTURE WORK

LLMs have significantly transformed coding practices, en-
abling both experts and novices to engage more efficiently in
programming tasks. Despite this potential, challenges remain
regarding the production of correct, efficient, and maintainable
code. We have investigated the performance of single LLMs
compared to multi-agent systems of LLMs in generating
Python code, focusing on various metrics such as lines of
code, cyclomatic complexity, runtime, memory usage, Halstead
complexity, and maintainability index.

We evaluated six LeetCode algorithm problems across three
difficulty levels—easy, medium, and hard—comparing LLM-
generated solutions against human-written code. The results
revealed that both the single LLM with role descriptions and
the multi-agent systems demonstrated a 50% success rate in
producing correct code, while the single LLM without role de-
scriptions achieved only a 33% success rate. All setups solved
the easy problems. But none successfully tackled the hard
problems, highlighting limitations in the LLMs’ capabilities.

Our results show that while multi-agent systems hold
promise, providing detailed role descriptions did not consis-
tently enhance performance. In terms of efficiency, multi-agent
setups produced comparable or better solutions for some tasks,
particularly in runtime. However, none of the LLM-generated
codes managed to outperform the human-written counterparts
in metrics such as memory usage and maintainability index.

But manually correcting incorrect code generated by LLM
setups can offer significant time savings over coding from
scratch: For instance, one incorrect code produced by the
single LLM without role descriptions was close enough to the
correct solution that manual correction resulted in a 23% time
reduction. This emphasizes the potential of LLMs to contribute
effectively in real-world coding scenarios, especially when
minor corrections are required.

Ultimately, our work highlights the importance of further
refining LLM frameworks and exploring the balance between
predefined roles and flexibility to enhance code quality and
maintainability in software development.
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