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MOTIVATION: Teacher Shortage Worldwide

additional teachers
are needed in
secondary education.

UNESCO DATA REVEALS A GLOBAL DECLINE OF INTEREST IN PURSUING A TEACHING CAREER.

Image and Text Sources: United Nations (02/2024)
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MOTIVATION: Teacher Shortage in Sub-Saharan Africa

Sub-Saharan Africa will need to
recruit 15 million additional teachers
to reach education goals by 2030.

UNESCO, THE TEACHERS WE NEED FOR THE EDUCATION WE WANT:
THE GLOBAL IMPERATIVE TO REVERSE THE TEACHER SHORTAGE, 2023

additional teachers
are needed in
secondary education.

mastercard
foundation

UNESCO DATA REVEALS A GLOBAL DECLINE OF INTEREST IN PURSUING A TEACHING CAREER.

Image and Text Sources: United Nations (02/2024); LinkedIn Post by Mastercard Foundation (02/2024)
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AUTOMATIC SHORT ANSWER GRADING

Question What 1s a variable?

Model answer A location in memory that can store a value.

Example: Answer 1 A variable 1s a location in memory where a value can be stored.
Grading: Answer 1 5 of 5 points

Example: Answer 2 Variable can be an integer or a string in a program.

Grading: Answer 2 2 of 5 points

Graphic Source: Custom Depiction.

12/04/2024 8 Al in Education: A Comparison of Large Language Models for Twi Automatic Short Answer Grading. Alex Agyemang and Tim Schlippe. SACAIR 2024



[ ]
INTERNATIONAL
I u UNIVERSITY OF
APPLIED SCIENCES

IDEA: LLMS FOR TWI AUTOMATIC SHORT ANSWER GRADING
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ZERO/FEW-SHOT CAPABILITIES: EASY TO USE WITH PROMPTING
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THE LANGUAGE TWI

~18 MILLION

SPEAKERS WORLDWIDE

Text Source: Yakubu (2024)
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RELATED WORK: LLMs on African Languages

v No known publications explicitly describe the use of LLMs for Twi natural language processing tasks
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RELATED WORK: LLMs on African Languages

v No known publications explicitly describe the use of LLMs for Twi natural language processing tasks

v' But the use LLMs for other African languages, e.g.

Ojo et al. (2024) analyzed 4 LLMs (mT0, Aya, LLaMA 2, GPT-4) on six tasks (topic classification,
sentiment classification, machine translation, summarization, question answering, and named
entity recognition) across 60 African languages.

=>» All LLMs performed worse on African languages compared to high-resource languages.
=>» LLMs were only evaluated from scratch, no few-shot learning.
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=>» LLMs were only evaluated from scratch, no few-shot learning.

Sikiru et al. (2024) analyzed 3 LLMs (GPT-4.0, GPT-3.5, Bard) on answering basic financial questions
in English and Yoruba.

=>» GPT-4.0 outperformed GPT-3.5 and Bard.
=>» LLMs show potential for financial queries but need improvement to better support Yoruba.
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state-of-the art LLMs
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Twi student answer + model answer

Image Source: Agyemang & Schlippe (2024).
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TWIAUTOMATIC SHORT ANSWER GRADING CORPUS
BASED ON THE ENGLISH BENCHMARK CORPUS OF THE UNIVERSITY OF NORTH TEXAS

Graphic Source: Custom Depiction.
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PROMPT for zero-shot

Please grade the student answer, given the question and the model
answer below. You can assign points between 0 and 5, where a com-
pletely correct answer received 5 points and a completely false answer
receives 0 points. Decimal places are also possible. Please provide the
question, model answer, student answer, and the number of points in
a table format.

<test set in csv format>

Image Source: Agyemang & Schlippe (2024).
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PROMPT for few-shot

Prompt for teaching how to grade:

Here are examples of exam questions (question), model answers (de-
sired_answer), student answers (student_answer), and corresponding
grades (score_avg) in each line in csv format:

<examples from training set in csv format>

From these examples, please learn how to grade, i.e. assign scores
for the student answers. The reason is that in the next prompt you
will be provided with exam questions (question), model answers (de-
sired_answer), student answers (student_answer) in csv format, and
you need to include the corresponding grades (score_avg) in each line.

Prompt for instructing to grade:

Thanks for learning how to grade based on the examples provided. Now
you will be provided with new exam questions (question), model an-
swers (desired_answer), student answers (student_answer) in csv format
in Twi, and you need to include the corresponding grades (score_avg) in
each line. Grade all the questions provided within the range of 0 to 5.
you can assign decimal values. Display your output in table format
with the headings “question”, “desired_answer”, “student_answer”,
and “score_avg”.

<test set in csv format>

Image Source: Agyemang & Schlippe (2024).
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Image Source: Agyemang & Schlippe (2024).

2
9

12/04/2024 35 Al in Education: A Comparison of Large Language Models for Twi Automatic Short Answer Grading. Alex Agyemang and Tim Schlippe. SACAIR 2024



RESULTS: MEAN ABSOLUTE ERROR RATES OF SINGLE LLMS
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Image Source: Agyemang & Schlippe (2024).
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RESULTS: MEAN ABSOLUTE ERROR RATES OF SINGLE LLMS

BEST AUTOMATIC SHORT ANSWER GRADING PERFORMANCE: AfroLM

Model Langp,omp: Lang..crade | MAE
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TW-EN translation + M-BERT — EN 0.79
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GPT-40.r0—shot EN TW 2.15
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Claude 3.5 Sonnet.., ., <hot EN TW 1.01
Clande 3.5 Sonnet few—shot EN TW 1.00
LLaMa 3.cro—shot EN TW 1.48
LLaMa 3fecw—shot EN TW 1.11

Image Source: Agyemang & Schlippe (2024).
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RESULTS: MEAN ABSOLUTE ERROR RATES OF SINGLE LLMS

2ND-BEST AUTOMATIC SHORT ANSWER GRADING PERFORMANCE: TW-EN translation + M-BERT
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Image Source: Agyemang & Schlippe (2024).
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RESULTS: MEAN ABSOLUTE ERROR RATES OF SINGLE LLMS
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Image Source: Agyemang & Schlippe (2024); Schlippe & Sawatzki (2022).
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RESULTS: MEAN ABSOLUTE ERROR RATES OF SINGLE LLMS

ISLLMS’ AUTOMATIC SHORT ANSWER GRADING PERFORMANCE BETTER

Model Langp,omp: Lang..crade | MAE
AfroLM - TW 0.73
TW-EN translation + M-BERT — EN 0.79
GPT-40.cr0—shot TW TW 2.36
TW-EN translation + GPT-40.¢r0—shot EN EN 2.51
GPT-40.r0—shot EN TW 2.15
GPT-40¢cw—shot EN TW 1.53
Claude 3.5 Sonnet.., ., <hot EN TW 1.01
Clande 3.5 Sonnet few—shot EN W 1.00
LLaMa 3.cro—shot EN TW 1.48
LLaMa 3fecw—shot EN TW 1.11

IF LangPrompt =TW or EN?
IF LangtoGrade =TW or EN?

Image Source: Agyemang & Schlippe (2024).
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RESULTS: MEAN ABSOLUTE ERROR RATES OF SINGLE LLMS

BEST LLM’S AUTOMATIC SHORT ANSWER GRADING PERFORMANCE WITH GTP-40:

Model Langp,omp: Lang..crade | MAE
AfroLM - TW 0.73
TW-EN translation + M-BERT — EN 0.79
GPT-40.cr0—shot TW TW 2.36
TW-EN translation + GPT-40.¢r0—shot EN EN 2.51
GPT-40.r0—shot EN TW 2.15
GPT-40¢cw—shot EN TW 1.53
Claude 3.5 Sonnet.., ., <hot EN TW 1.01
Clande 3.5 Sonnet few—shot EN W 1.00
LLaMa 3.cro—shot EN TW 1.48
LLaMa 3fecw—shot EN TW 1.11

LangPrompt =EN and LangtoGrade=TW

Image Source: Agyemang & Schlippe (2024).
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RESULTS: MEAN ABSOLUTE ERROR RATES OF SINGLE LLMS

IMPACT OF PROVIDING EXAMPLES TO LLMS: ZERO-SHOT VS. FEW SHOT
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RESULTS: MEAN ABSOLUTE ERROR RATES OF COMBINED LLMS

Model Combination

- MAE

Pre-trained LMs (AfroLM + M-BERT)

0.64

LLMs:cro—shot (GPT-40 + Claude 3.5 Sonnet + LLaMa 3)
LLMsfew—shot (GPT-40 + Claude 3.5 Sonnet + LLaMa 3)

1.26
1.10

Pre-trained LMs + LLMs¢.u— shot

Pre-trained LMs + LLMsfecw—shot + LLMS:ero—shot

IMPACT OF COMBINING OUTPUTS?

Image Source: Agyemang & Schlippe (2024).
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