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ABSTRACT

For pronunciation dictionary creation, we propose the com-
bination of grapheme-to-phoneme (G2P) converter outputs
where low resources are available to train the single convert-
ers. Our experiments with German, English, French, and
Spanish show that in most cases the phoneme-level combi-
nation approaches validated reference pronunciations more
than the single converters. In case of only little training data,
the impact of the fusion is high which shows their great im-
portance for under-resourced languages. We detected that
the output of G2P converters built with web-derived word-
pronunciation pairs can further improve pronunciation qual-
ity. With 23.1% relative in terms of phoneme error rate to
the reference dictionary, we report the largest improvement
for the scenario where only 200 French word-pronunciation
pairs and web data are given as training data. In additional
automatic speech recognition experiments we show that the
resulting dictionaries can lead to performance improvements.

Index Terms— pronunciation dictionary, pronunciation
modeling, low-resource scenarios, multilingual speech recog-
nition, rapid language adaptation

1. INTRODUCTION

With more than 7,000 languages in the world, the biggest
challenge today is to rapidly port speech processing systems
to new languages with low human effort and at reasonable
cost. This includes the creation of qualified pronunciation
dictionaries. The dictionaries provide the mapping from the
orthographic form of a word to its pronunciation, which is
useful in both speech synthesis and automatic speech recog-
nition (ASR) systems. Pronunciation dictionaries can also be
used to build generalized grapheme-to-phoneme (G2P) mod-
els, for the purpose of providing pronunciations for words
that do not appear in the dictionary [1]. The manual pro-
duction of dictionaries can be time-consuming and expen-
sive. Therefore knowledge-based and data-driven grapheme-
to-phoneme (G2P) conversion approaches for the automatic
dictionary generation have been introduced (see Section 2).
As pronunciation dictionaries are so fundamental to speech
processing systems, much care has to be taken to create a dic-
tionary that is as free of errors as possible. For ASR systems,

faulty pronunciations in the dictionary may lead to incorrect
training of the system and consequently to a system that does
not function to its full potential. Flawed dictionary entries can
originate from G2P converters with shortcomings.

Our goal is to investigate if a combination of G2P con-
verter outputs outperforms the single converters. This is par-
ticularly important for the rapid bootstrapping of speech pro-
cessing systems if not many manual created example word-
pronunciation (W-P) pairs are available and therefore a single
G2P converter has a poor performance. In the case of semi-
automatic pronunciation generation, enhanced pronunciations
derived from the combination would reduce the editing effort
and speed up the annotation process. We combine the G2P
converter outputs based on a voting scheme at the phoneme-
level. Our motivation is that the converters are reasonably
close in performance but at the same time produce an out-
put that differs in their errors. This provides complementary
information which leads in combination to performance im-
provements. With the phoneme error rate (PER), we evaluate
how close the resulting pronunciations come to pronuncia-
tions which have been successfully used in speech processing
projects.

For training the G2P converters, we select different
amounts of English, French, German, and Spanish W-P pairs
to simulate scenarios with small amounts of W-P pairs, since
our intention is that our approach can be applied to languages
with very limited lexical resources and differing grade in
G2P regularity. In additional ASR experiments we investi-
gate the impact of the phoneme-level combination on ASR
performance, especially in the context of confusion network
combinations.

This paper is structured as follows: Section 2 gives
an overview of knowledge-based, data-driven and semi-
automatic G2P conversion approaches. In Section 3 we
present the G2P converters we conduct our experiments with.
We describe our experiments in Section 4. In Section 5 we
conclude our work and propose further steps.

2. RELATED WORK

Knowledge-based approaches with rule-based G2P conver-
sion systems were developed which can typically be ex-
pressed as finite-state automata [2] [3]. Often, these methods



require specific linguistic skills and exception rules formu-
lated by human experts. In contrast, data-driven G2P conver-
sion approaches predict the pronunciation of unseen words
purely by analogy. The benefit of the data-driven approach
is that it trades the time- and cost-consuming task of de-
signing rules, which requires linguistic knowledge, for the
much simpler one of providing example pronunciations. [3]
propose Classification and Regression Trees (CART) to the
G2P task. In [4], the alignment between graphemes and
phonemes is generated using a variant of the Baum-Welch
expectation maximization algorithm. [5], [6] and [7] use a
joint-sequence model. [8] and [9] utilize weighted finite-
state transducers (WFSTs) for decoding as a representation
of the joint-sequence model. [10], [11], and [12], apply
statistical machine translation (SMT)-based methods for the
G2P conversion. A good overview of state-of-the-art G2P
methods is given in [13]. Methods to leverage off pronun-
ciations from the World Wide Web have been introduced
[14] [15] [16] [1] [17]. Furthermore several methods to
generate pronunciations in a semi-automatic way have been
presented [18][19][20][21][22].

3. EXPERIMENTAL SETUP

3.1. Grapheme-to-Phoneme Converters

We analyze five common G2P conversion approaches and
their combination:

• SMT-based with Moses Package [23] [24] (Moses)

• Graphone-based with Sequitur G2P [25] (Sequitur)

• WFST-driven with Phonetisaurus [8] (Phonetisaurus)

• CART-based with t2p [3] (Carttree)

• Simple G2P conversion based only on the mostly ut-
tered phoneme for each grapheme1 (Rules).

3.2. Data

As our methods should work for languages with different
grade of regularity in G2P relationship, our experiments are
conducted with German (de), English (en), Spanish (es), and
French (fr). G2P accuracy is a measure of the regularity of the
G2P relationship of a language and [1] showed that the G2P
accuracy for en is very low, for es it is very high, whereas de
and fr are located in between.

For evaluating our G2P conversion methods, we use Glob-
alPhone dictionaries for de and es as reference data since they
have been successfully used in LVCSR [26]. For fr, we em-
ploy a dictionary developed within the Quaero Programme.

1In contrast to the other data-driven approaches, it represents a
knowledge-based approach.

The en dictionary is based on the CMU dictionary2. All dic-
tionaries contain words from the broadcast news domain. For
each language, we randomly selected 10k W-P pairs from the
dictionary for testing. From the remainder, we extracted 200,
500, 1k, and 5k W-P pairs for training to investigate how well
our methods perform on small amounts of data. To evaluate
the quality of the G2P converters’ outputs, we apply them to
the words in the test set and compute their phoneme error rate
(PER) to the original pronunciations.

For the ASR experiments, we replace all pronuncia-
tions in the dictionaries of our de and en GlobalPhone-based
speech recognizers with pronunciations generated with the
G2P converters. Thereby we replace 39k pronunciations for
German for de and 64k for en. Then we use them to build
and decode LVCSR systems. The transcribed audio data
and language models for de come from the GlobalPhone
project [26], those for en from the WSJ0 corpus [27]. Finally,
we decode their test sets with the resulting systems.

As we are able to find en, fr, de, and es W-P pairs in Wik-
tionary3, we additionally built a G2P converter with these data
for each language. The quality of web-derived pronunciations
is usually worse than handcrafted pronunciations. However,
the W-P pairs from the Web can include complementary infor-
mation than our given training data and we can find W-P pairs
even for languages with no or very limited lexical resources
as we have shown in [17].

4. EXPERIMENTS AND RESULTS

4.1. Analysis of the G2P Converters’ Output

For all G2P converters, we use context and tuning parame-
ters that result in lowest PERs on the test set with 1k training
data. Figure 1 demonstrates the PERs of the single G2P con-
verter outputs. The converters with lowest PER are marked
with arrows. They serve as a baseline for us and we compute
the relative PER change compared to their PER in Section 4.2
and 4.3. We observe lower PERs with increasing amount of
training data. Lowest PERs are achieved with Sequitur and
Phonetisaurus for all languages and data sizes. Carttree re-
sults in worse performance. Moses is always worse than Se-
quitur and Phonetisaurus, even it is very close for de. For
200 en and fr W-P pairs, Rules outperforms Moses. To show
that the G2P converters produce different outputs, we present
the edit distances at the phoneme-level between the G2P con-
verter outputs trained with 1k W-P pairs in Table 1. How
much they differ depends on the similarity of the correspond-
ing technique. For example, the smallest distances are be-
tween Sequitur and Phonetisaurus, while Rules has the high-
est distances to the other approaches. It is also dependent on
the G2P relationship: While the en outputs differ most for all

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
3http://www.wiktionary.org



Sequitur Phonetisaurus Carttree Moses
Phonetisaurus 10.8 / 4.4 / 4.8 / 1.0 X X X
Carttree 23.4 / 11.9 / 9.4 / 2.2 23.6 / 12.3 / 10.9 / 2.2 X X
Moses 35.8 / 7.7 / 25.9 / 7.6 35.7 / 7.6 / 26.3 / 7.7 39.8 / 12.5 / 27.9 / 7.1 X
Rules 45.8 / 34.4 / 32.6 / 11.3 45.6 / 34.3 / 32.7 / 11.5 46.1 / 34.3 / 33.5 / 11.3 40.3 / 34.7 / 35.7 / 10.7

Table 1. Edit Distances at the Phoneme-Level between G2P Converter Outputs (en / de / fr / es).

Fig. 1. PER of Single G2P Converter Outputs to Reference Pronunciations over Amount of Training Data.

amounts of training data, the es ones are closest. The dis-
tances of fr and de are located in between.

4.2. Phoneme-Level Combination:
Combining the G2P Converters’ Output

For the phoneme-level combination (PLC), we apply nbest-
lattice at the phoneme-level which is part of the SRI Lan-
guage Modeling Toolkit [28]. From each G2P converter we
select the most likely output phoneme sequence (1st-best hy-
pothesis). Then we use nbest-lattice to construct a phoneme
lattice from all converters’ 1st-best hypotheses and extract the
path with the lowest expected PER. We detected that in some
cases the combination of subsets of G2P converter outputs
improved PER slightly. In other cases single much worse 1st-
best G2P converter outputs even helped to improve quality.
As in a real scenario the impact is not clear, we continued
our experiments with the combination of all 1st-best converter
outputs.

The left blue bars in Figure 2 (PLC-w/oWDP) show the
change in PER compared to the G2P converter output with the
highest quality. In 10 of 16 cases the combination performs
equal or better than the best single converter. For de, we ob-
serve improvements for all training data sizes, for en slight
improvements in four of five cases. Therefore we selected
these languages for our ASR experiments (see Section 4.4).

For es, the language with the most regular G2P relationship,
the combination never results in improvements. While for de
the improvement is higher with less training data, the best
fr improvement can be found with 5k training data. Further
approaches of weighting the 1st-best G2P converter outputs
could only reach the quality of the best single converter and
not outperform it.

4.3. Adding Web-driven G2P Converters’ Output

We used Sequitur to build additional G2P converters based on
pronunciations which we found in Wiktionary together with
corresponding words (WDP) and analyzed their impact to
the combination quality. The single de web-driven converter
trained with unfiltered W-P pairs has a PER of 16.74%, the en
one 33.18%, the fr one 14.96%, and the es one 10.25%. The
de one trained with filtered W-P pairs has a PER of 14.17%,
the en one 26.13%, and the fr one 13.97%. However, the PER
of the es one slightly increased to 10.90%.

Figure 2 shows the changes without (PLC-w/oWDP) and
with additional converter outputs compared to the best sin-
gle converter. First we built G2P converters after we ex-
tracted W-P pairs from Wiktionary without any filtering (PLC-
unfiltWDP). Second we filtered them before we built the G2P
converters as described in [29] (PLC-filtWDP).

For de, the web-driven G2P converter’s optimal training



Fig. 2. Rel. PER Change to Reference Pronunciations with PLC using Converters Trained with Web-derived Pronunciations

Fig. 3. WER with Dictionaries from Single G2P Converter Outputs over Amount of G2P Training Data.

data were obtained with a 2-stage filtering (G2PLen): First
we compute the mean (µLen) and the standard deviation
(σLen) of the ratio of grapheme and phoneme tokens over
all W-P pairs. Then we remove W-P pairs whose ratio of
grapheme and phoneme tokens was shorter than µLen−σLen

or longer than µLen + σLen. With the remaining W-P pairs
we train a G2P model and apply it to convert the grapheme
strings of the remaining words into a most likely phoneme
strings. Then we compute the mean (µG2P ) and the stan-
dard deviation (σG2P ) of the edit distances between the
synthesized phoneme strings and the pronunciations from
the Web. Finally, we remove a W-P pair if the edit distance
between a synthesized phoneme string and the pronunciation
from the Web is shorter than µG2P − σG2P or longer than
µG2P + σG2P .

For en and es, the web-driven G2P converter’s optimal
training data were obtained with the m-n Alignment Filtering
(M2NAlign). For that we perform an M-N G2P alignment [30]
[3] to the web-derived W-P pairs. Then we compute the mean
(µM2NAlign) and the standard deviation (σM2NAlign) of the
alignment scores. Finally, we remove W-P pairs whose align-
ment score is shorter than µM2NAlign−σM2NAlign or longer
than µM2NAlign + σM2NAlign.

Best quality for fr was achieved with Epsilon Filtering
(Eps). For that we perform a 1-1 g2p alignment [30][3]
which involves the insertion of graphemic and phonemic
nulls (epsilons) into the lexical entries of words. Then we
remove a W-P if the proportion of graphemic and phonemic
nulls is shorter than µEps−σEps or longer than µEps+σEps.

With each filtering method, 15% of the inconsistent web-
derived word-pronunciation pairs were removed. More infor-
mation about our filtering methods is described in in [29].

We observe that PLC-unfiltWDP outperforms the best sin-
gle converter output in 15 of 16 cases. In all cases it is bet-
ter than w/oWDP. Like PLC-unfiltWDP, PLC-filtWDP out-
performs the best single method in 15 cases. However, it is
in all cases better than PLC-unfiltWDP and better than PLC-
w/oWDP. With 23.1% relative PER improvement, we report
the largest improvement for fr where only 200 French W-P
pairs and web data are given as training data.

Where our PLC methods improves PER, a linguist or na-
tive speaker has to change less phonemes to meet a validated
pronunciation quality. Therefore PLC has potentials to en-
hance the processes of semi-automatic pronunciation dictio-
nary creation described in [18], [19], [20], [21], and [22].



Fig. 4. Rel. WER (%) Change over Training Data Size With and Without Web-derived Data.

4.4. ASR Experiments

For de and en, we have illustrated that we can approximate
validated pronunciations using PLC, which can be helpful for
speech synthesis and to lower the editing effort in the semi-
automatic dictionary generation. In the following sections we
investigate if the impact of the phoneme-level combination
additionally has immediately a positive impact on ASR per-
formance. Furthermore we compare PLC (early fusion) to a
combination at lattice-level (late fusion) from the output of
individual ASR systems.

For the evaluation we built separate ASR systems for each
single G2P converter as follows: We replaces the pronuncia-
tions for all words in our de and en reference dictionary (39k
for de and 64k for en) with pronunciations generated with the
G2P converters. Then we used them to build and decode the
systems. For each W-P pairs size, the best performing single
system serves as baseline. Then we evaluated the combination
approaches with the relative change in word error rate (WER)
compared to the best performing system that is trained with
a dictionary that has been built with a single converter. We
marked those baseline systems with arrows in Figure 3.

Figure 3 depicts variations in WER with increasing
amounts of training data, even if there is a general decrease
with more training data using our data-driven G2P converters
except for en with Moses. As in our PER evaluation, Se-
quitur and Phonetisaurus outperform the other approaches in
most cases. However, Rules results in lowest WERs for most
scenarios with less than 1k training data.

ASR Systems with Dictionaries from
Phoneme-Level Combination

Figure 4 shows the WER changes compared to the best sin-
gle converter, using dictionaries generated from PLC without
(PLC-w/oWDP) and with (PLC-filtWDP) the additional web-
driven G2P converter outputs. PLC-w/oWDP is only in one
case better than the best single method, whereas PLC-filtWDP
outperforms the best single system in four cases. This shows
that the web data can also have a positive impact on improve
ASR performance.

Furthermore we learn that getting closer to the qualified
pronunciations with PLC does not mean that the WER of the
ASR systems improves. Figure 5 indicates that the correla-
tion between the percentage of insertion and deletion errors
(I+D) to the reference pronunciations at the phoneme-level
correlates stronger with the WER than the PER to the refer-
ence pronunciations. We believe that ASR systems usually
deal better with substitution errors in the pronunciations than
insertion and deletion errors due to the acoustic model. Ad-
ditionally, the fact that errors in the pronunciations of words
that occur frequent in training and test set have a bigger im-
pact on the word error rate than less frequent ones blurs the
correlation between WER and PER.

Confusion Network Combinations

ASR system combination methods are known to lower the
WER of ASR systems [31]. They require the training of
systems that are reasonably close in performance but at the
same time produce an output that differs in their errors. This
provides complementary information which leads to perfor-
mance improvements. As the individual ASR systems with
the dictionaries from different G2P converter outputs are



Fig. 5. Correlation betw. PER/I+D to qualified dictionary and
WER.

close in performance, we combine them with a Confusion
Network Combination (CNC) (late fusion) and compare it to
the PLC performance.

Figure 4 illustrates that a late fusion with CNC outper-
forms the early fusion approach with PLC. Including the sys-
tems with pronunciation dictionaries that have been built with
PLC to CNC (CNC+PLC), outperformed CNC in six systems.
While for de CNC gave improvement for all amounts of G2P
training material, it outperformed the best single system in
only half of the cases for en. With 8.8% relative WER im-
provement, we report the largest improvement for de where
only 200 German W-P pairs and web data are given as train-
ing data. We believe that the advantage of CNC is that lan-
guage model information is available which lacks in the PLC
approach.

5. CONCLUSION AND FUTURE WORK

We have analyzed the G2P converter output combination of
four languages with differing grade in G2P regularity and
simulated scenarios with small amounts of W-P pairs. First
we showed that the different converters produce different
pronunciations which are close in performance. We have
evaluated the phoneme-level combination approach with the
phoneme error rate to qualified pronunciations and conducted
additionally ASR experiments for German and English.

The output of G2P converters built on web-derived word-
pronunciation pairs could further improve pronunciation
quality. Filtering the web data enhances the resulting pronun-
ciation quality and the ASR performance. Our phoneme-level
combination has potentials to enhance the processes of semi-
automatic pronunciation dictionary creation by reducing the
human editing effort.

The positive impact of the combination in terms of lower
PERs compared to qualified pronunciations had only little in-
fluence on the WERs of our ASR systems - more for de than
for en. Including the systems with pronunciation dictionar-
ies that have been built with the phoneme-level combination
to confusion network combinations led to improvement in six
systems.

We plan to investigate our approaches for further under-
resourced languages and enhance the combination at the
phoneme-level.
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