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ABSTRACT

In this paper we tackle the task of bootstrapping an Automatic
Speech Recognition system without an a priori given language
model, a pronunciation dictionary, or transcribed speech data for the
target language Slovene – only untranscribed speech and translations
to other resource-rich source languages of what was said are avail-
able. Therefore, our approach is highly relevant for under-resourced
and non-written languages. First, we borrow acoustic models from a
strongly related language (Croatian) and apply a Croatian phoneme
recognizer to the Slovene speech. Second, we segment the recog-
nized phoneme strings into word units using cross-lingual word-to-
phoneme alignment. Third, we compensate for phoneme recognition
and alignment errors in the segmented phoneme sequences and ag-
gregate the resulting phoneme sequence segments in a pronunciation
dictionary for Slovene. Orthographic representations are generated
using a Croatian phoneme-to-grapheme model. Finally, we use the
resulting dictionary and the Croatian acoustic models to recognize
Slovene. Our best recognizer achieves a Character Error Rate of
52% on the BMED corpus.

Index Terms— pronunciation dictionary, non-written lan-
guages, word-to-phoneme alignment, language discovery, zero-
resource

1. INTRODUCTION

Nowadays the majority of state-of-the-art Automatic Speech Recog-
nition (ASR) systems heavily relies on large amounts of data which
is necessary to train such systems. Transcribed speech resources,
large amounts of text for language modeling, and pronunciation dic-
tionaries are of great importance to create such systems. Authors
in [1] estimate that transcription of 1 hour conversational speech
data can take up to 20 hours of effort. Therefore, in recent years
ASR research has shifted its focus to low- and under-resourced set-
tings [2] to address less prevalent languages as well, e.g. by explor-
ing new ways to collect data [3, 4, 5, 6], using grapheme-based ap-
proaches [7], or sharing information across languages [8]. Zero-
resource (ZR) ASR goes one step further and even refrains from
assuming the availability of a pronunciation dictionary, transcribed
audio data, or a language model (LM) in the target language [9] –
only untranscribed audio data are available in the target language.
Language discovery for ZR ASR can be subdivided into two steps:
1. Phonetic discovery aims to find subword units suitable for acous-
tic modeling. 2. Lexical discovery identifies word-like structures and
phrases based on phonetic transcriptions of continuous target lan-
guage speech. Word segmentation describes the task of segmenting
the phonetic target language transcriptions into word-like units and

thus is a form of lexical discovery. Among a variety of monolingual
approaches to word segmentation [9, 10, 11, 12], recent studies have
shown [13, 14, 15, 16], that adding written translations in a resource-
rich source language can help the word segmentation process.

In our scenario a human translator produces utterances in the tar-
get language (Slovene) from prompts in one or many resource-rich
source languages (German, English, Croatian) as illustrated in Fig. 1.
Since we assume the source languages to be well-studied, we have
access to a phoneme recognizer trained on speech data in a related
language (Croatian). Since Croatian is phonetically closely related
with Slovene, we simply use this phoneme recognizer for Slovene
instead of applying phonetic discovery methods that learn from tar-
get language speech. In this paper, we combine recent findings in
language discovery research, a novel string clustering method, and
resources from other resource-rich languages to build an ASR sys-
tem for the target language Slovene without an a priori given LM,
a pronunciation dictionary, or transcribed speech data in the target
language – only untranscribed speech in Slovene and translations to
other resource-rich source languages of what was said is available.
Our approach is in particular intended for non-written languages and
dialects since no written form is required for the target language.

To the best of our knowledge, although isolated steps in this pro-
cess have been studied extensively within restricted experiment set-
tings, the complete pipeline has never been set up before. In particu-
lar, research in word segmentation often assumes error-free phonetic
transcriptions [12, 9]. In this work, we compensate for alignment
and recognition errors.

2. RELATED WORK

Pronunciation dictionaries are used to train speech processing sys-
tems by describing the pronunciation of words in manageable units
such as phonemes [17]. The production of pronunciation dictionar-

Fig. 1. Scenario.



Vocabulary Size Avg. Word Frequency Avg. Sentence Length Speakers Audio
Croatian (hr) 280 words 3.19 4.47 words 8 96 min.
English (en) 163 words 6.90 5.62 words - -
German (de) 184 words 6.11 5.62 words - -
Slovene (si) 279 words 3.24 4.50 words 5 50 min.

Table 1. Text analysis on BMED.

ies can be time-consuming and expensive if they are manually writ-
ten by language experts. Therefore several data-driven approaches
to automatic dictionary generation, e.g. [18], and to leverage off pro-
nunciations from the World Wide Web have been introduced [3, 4,
19, 5]. However, those approaches do not help for dialects or lan-
guages without a written form. Speech processing for non-written
languages has been studied in context of speech translation [13, 14,
20], speech syntheses [21, 22] and speech recognition [15, 16]. In
this paper, we use a phoneme-to-grapheme model from a related lan-
guage to generate orthographic representations from extracted pro-
nunciations and thus do not rely on a written form of the target lan-
guage.

Studies in the fields of psychology and cognitive science investi-
gated infants ability to segment fluent speech into words [24, 25, 26].
Unsupervised word or morphology segmentation in machine learn-
ing relies primarily on statistical models [27, 10, 12, 11] or Minimal
Description Length analysis [28, 29]. Using translations in a source
language for word segmentation and pronunciation extraction is ad-
dressed in [13, 14, 15, 16]. This paper investigates how to integrate
translations in multiple source languages.

Phonetic language discovery (i.e. Identifying phoneme like sub-
word units for acoustic modeling in an unseen target language) is
addressed among others in [30, 31, 32]. Bootstrapping it using ASR
systems from other languages and adaptation techniques are pre-
sented e.g. in [33]. In this work, we use the phoneme set and acoustic
models of Croatian for the Slovene language since they are strongly
related.

Document clustering [34] addresses the task of grouping a set of
strings into clusters, but usually deals with text documents consisting
of a large number of words (e.g. web documents [35]). In contrast to
this, we aim to cluster short strings (word pronunciations) based on
the Levenshtein distance.

3. BMED CORPUS

We collected our BMED corpus (Basic Medical Expression Database)
to evaluate our methods on short but realistic sentences. The BMED
corpus consists of 200 parallel written sentences in Croatian, En-
glish, German and Slovene in the scope of common medical phrases.
We recorded 50 minutes Slovene speech from 5 Slovene native
speakers. Each Slovene sentence was read by 3-5 Slovene speakers.
Tab. 1 shows high average word frequencies (i.e. frequent word
recurrences), small vocabularies and low average sentence lengths.
Tab. 2 summarizes the word-level IBM-4 perplexities from the
BMED languages to Slovene given by GIZA++ [23].

Source Language IBM-4 Perplexity
Croatian (hr) 3.25
English (en) 9.15
German (de) 7.95

Table 2. IBM Model 4 perplexity according GIZA++ [23] on the
BMED corpus (Target language: Slovene).

Since our speakers were geographically widely distributed, we
developed the web-based recording tool CorpusGong. This tool is
designed with major respect to usability and stability so that speak-
ers can record their utterances at home and no supervision is nec-
essary. The user interface (Fig. 2) is available in Croatian, English
and Slovene. The open source tool NanoGong [37] was integrated
to provide voice recording functionality via a Java applet.

Croatian and Slovene are phonetically and linguistically related.
Tab. 3 shows the high similarity of both phoneme sets. Both are
South Slavic languages and their orthographies are based on Gaj’s
Latin alphabet [38, 39]. This enables us to utilize the Croatian
phoneme set, acoustic models, and a phoneme-to-grapheme model
for the Slovene language with limited performance degradation.

4. PRONUNCIATION DICTIONARY EXTRACTION

We bootstrap an ASR system for the target language Slovene without
a Slovene pronunciation dictionary or transcribed Slovene audio data
using resources from Croatian and written translations in Croatian,
English, and German. First, we build the pronunciation dictionary
for Slovene:

1. Phoneme Recognition: Transform the Slovene speech with
a Croatian phoneme recognizer to phoneme sequences.

2. Cross-lingual Word-to-Phoneme Alignment: Align the
phoneme sequences to the written translations in Croatian,
English, and German. The alignments induce a segmentation
of the phoneme sequences in word-like chunks.

3. Phoneme Sequence Clustering: The phoneme sequence
segments extracted from the alignments suffer from frequent
alignment and phoneme recognition errors. Therefore, group
different realizations of the same Slovene word into clusters.

Fig. 2. Recording interface of CorpusGong in Slovene.



Related Lang.
Target Lang. Croatian

(33 phonemes)
English

(42 phonemes)
German

(39 phonemes)
Slovene

(34 phonemes)
Croatian 100% 45.24% 61.54% 88.24%
English 75.76% 100% 69.23% 70.58%
German 72.73% 61.90% 100% 82.35%
Slovene 90.91% 57.14% 71.79% 100%

Table 3. Phoneme set coverages of the BMED languages according to IPA [36].

Fig. 3. Overview of the system design.

4. Building the Pronunciation Dictionary: For each cluster,
find a representative phoneme sequence and write it as word
pronunciation to the dictionary. Orthographic representa-
tions are generated with a phoneme-to-grapheme model from
Croatian.

The next sections discuss these steps in depth. Fig. 3 shows the
complete system design and Fig. 4 illustrates the steps with the help
of a small example.

4.1. Phoneme Recognition

The phoneme recognition in Slovene is done with a Croatian context-
independent phoneme recognizer (50 phonemes) trained on 20 hours
Croatian speech data from the GlobalPhone project [40] using the
Janus Recognition Toolkit [41]. The GlobalPhone corpus is a col-
lection of read speech in 20 widespread languages in the world.
The recognizer uses a uniformly distributed phoneme level LM (0-
gram) because we have no knowledge about n-gram phoneme fre-
quencies in the target language. The preprocessing consists of fea-
ture extraction applying a Hamming window of 16ms length with a
window shift of 10ms. Each feature vector has 143 dimensions by
stacking 11 adjacent frames of 13 Melscale Frequency Ceptral Co-

Phoneme Error Rate
Croatian GlobalPhone test set 33.0%
Croatian BMED corpus 43.4%
Slovene BMED corpus 55.2%

Table 4. Performance of the Croatian phoneme recognizer.

Fig. 4. Steps for the pronunciation dictionary extraction.

efficients (MFCC) frames. A Linear Discriminant Analysis (LDA)
transformation is computed to reduce the feature vector size to 42
dimensions. The AM uses a fully-continuous 3-state left-to-right
HMM with emission probabilities modeled by Gaussian Mixtures
with diagonal covariances (64 Gaussians per state). The recognizer
achieves a Phoneme Recognition Error Rate of 33.0% on the Croa-
tian GlobalPhone test set, and 55.2% Phoneme Recognition Error
Rate on Slovene speech data from the BMED corpus (Tab. 4). The
error rate for the Slovene speech was calculated using an IPA based
mapping from the Slovene phoneme set.

4.2. Cross-lingual Word-to-Phoneme Alignment

Cross-lingual word-to-phoneme alignments introduced in [20, 13,
14] and tackled by [15] with the alignment model Model 3P are
the basis for our pronunciation extraction algorithm. The word seg-
mentation problem describes the task of segmenting phoneme se-
quences into word units. [15] and [16] show that unsupervised learn-
ing of word segmentation is more accurate when information of an-
other language is used. Model 3P (implemented in the PISA Align-
ment Tool1) for cross-lingual word-to-phoneme alignment extends
the generative process of IBM Model 3 by a word length step and ad-
ditional dependencies for the lexical translation probabilities. Align-
ments are used for the segmentation task as illustrated in Fig. 5. For

1available at http://pisa.googlecode.com/



Fig. 5. Word segmentation through word-to-phoneme alignment.

a more detailed description of Model 3P used in this paper we refer
to [15].

4.3. Phoneme Sequence Clustering

Let PhonemeSethr be the Croatian phoneme set and Σ ⊂
PhonemeSethr

+ be the set of phoneme sequence segments which
we extract from the word-to-phoneme alignments (see Sec. 4.2).
The function c : Σ→ N+ indicates how often a phoneme sequence
segment was found in the word-to-phoneme alignments in the previ-
ous step. Elements in Σ correspond to Slovene words, but are often
corrupted by alignment and phoneme recognition errors. In this
step, we therefore group different realizations of the same Slovene
word into clusters

C = {C1, C2, . . . , Cn} ⊂ P(Σ) with Σ =
⊎

i∈[1,n]

Ci. (1)

In order to build C automatically, we first run k-means clus-
tering [42] based on the Levenshtein distance for 8 iterations. The
means are initialized with the k most frequent elements in Σ (indi-
cated by c). To find a mean µ(Ci) ∈ PhonemeSethr+ for a cluster
Ci, we use the nbest-lattice tool [43]. k is an initial guess
for the target language vocabulary size, that can be derived from
the vocabulary size of Croatian. Therefore we set k = 280. How-
ever, k-means fails to separate phonetically similar Slovene words
reliably: For example, different inflections (like bo (“it will”) and
bom (“I will”)) or completely different words (like da (“yes”) and
dan (“day”)) are often placed in the same cluster. Instead, we want
elements in Ci to be realizations of a single Slovene word µ(Ci).
Therefore we introduce the outlier index oidx : C → Q+:

C̃i := {p ∈ Ci|p 6= µ(Ci)} (2)

oidx : Ci 7→

1 if C̃i = ∅
max

p∈C̃i
c(p)

Median({c(p)|p∈C̃i})
otherwise

(3)

C̃i denotes the set of all elements in Ci that differ from the
mean µ(Ci). If the elements in C̃i are corrupted realizations of
µ(Ci), we assume that they are approximately uniformly distributed
(Var(c(C̃i)) is small). This is only an approximation, because errors
made by the phoneme recognizer or the alignment model usually de-
pend on the context and the actually spoken phoneme. However, an
element o ∈ C̃i that occurs significantly more often than other el-
ements in C̃i is likely to be a different Slovene word rather than a
corrupted version of µ(Ci): Correct pronunciations are assumed to

Fig. 6. The outlier indices for different distributions in C̃i.

occur more often than incorrect ones and thus result in a high oidx.
Fig. 6 illustrates the oidx for seven clusters – i.e. seven possible dis-
tributions in C̃i. Peaks in the distributions indicate Slovene words
that are incorrectly grouped to cluster Ci. In each iteration, the max-
imal element in each C̃i with oidx higher than a threshold εoidx is
moved in a separate cluster and k is incremented (i.e. k is increased
to 12 in Fig. 6). We refrained from using other outlier detection
methods: Some (e.g. Grubbs’ test or Chauvenet’s criterion [44]) take
the standard derivation into account and thus score examples 3) to 5)
differently. Some (e.g. Grubbs’ test) only work reliably on larger
sample sizes. Dixon’s Q test [45] would penalize example 3) con-
taining two outliers because of the small gap between both. Tests
based on the (edit) distance between the cluster mean and the puta-
tive outlier are misleading since a small distance does not necessary
indicate that both elements belong to the same cluster (e.g. mine and
fine in English). On the contrary, the proposed oidx is a simple cri-
terion that has proved to be effective in our case. After the initial 8
k-means iterations, we therefore run a modified version of k-means
that searches for clusters with high outlier indices in each iteration,
and would propagate o as a new mean by putting it in a separate
cluster. Thus, the final number of clusters may differ from k since it
is incremented whenever an element is moved to a separate cluster
because of the oidx criterion. The complete algorithm description
is listed in Alg. 1.

Algorithm 1 kmeansOidx(Σ, k ∈ N+, εoidx ∈ Q+)

Require: Σ 6= ∅
Require: M ⊂ PhonemeSethr+ × P(Σ)

1: M ← initializeMeans(Σ, k)
2: for i← 1 to 8 do
3: assignmentStep(M)
4: updateStep(M)
5: end for
6:
7: for i← 1 to 8 do
8: assignmentStep(M)
9: updateStep(M)

10: for all {(µ,C) ∈M |oidx(C) ≥ εoidx} do
11: o← arg maxµ 6=p∈C c(p)
12: M ←M ∪ {(o, {o})}
13: end for
14: end for



4.4. Building the Pronunciation Dictionary

The previous step results in a set of clusters C = {C1, C2, . . . ,
Cn}, where each cluster Ci stands for a single Slovene word. We
use its mean µ(Ci) as pronunciation in the pronunciation dictionary
for Slovene. Consequently, the number of clusters |C| is reflected
by the size of the extracted dictionary in Tab. 5 and 7. To find an or-
thographic representation for µ(Ci), we transform the phoneme se-
quence to a written form with a phoneme-to-grapheme model from
a related language. Croatian is closely related to Slovene and is even
written with the same script (Sec. 3). Both languages have a good
phoneme-to-grapheme relation. We trained a phoneme-to-grapheme
model p2ghr on the Croatian GlobalPhone pronunciation dictionary
using Sequitur G2P [18]. This model is used for generating the writ-
ten form from a pronunciation µ(Ci). Applying this model to the
correct pronunciations in the Slovene reference dictionary and com-
paring the generated written forms with the correct Slovene written
words results in 5.4% character error rate.

5. LANGUAGE MODEL EXTRACTION

Language modeling for the target language is especially hard be-
cause we do not assume the availability of text data in the target lan-
guage. In initial experiments, we apply a uniformly distributed LM
(0-gram). However, Sec. 6.3 shows that our best results are achieved
with a unigram LM. The unigram word probabilities are estimated
using the sum of occurrences of elements in a cluster:

P̂ (p2ghr(µ(Ci)) =

∑
p∈Ci

c(p)∑
p∈Σ c(p)

, i ∈ [1, n]. (4)

6. EXPERIMENTS

6.1. Evaluation Measures

To evaluate the extracted pronunciation dictionaries, we apply the
evaluation measures for the pronunciation extraction from phoneme
sequences introduced in [16]: The mapping m maps each entry in
the extracted dictionary to the most similar pronunciation in the ref-
erence dictionary containing the correct pronunciations as shown in
Fig. 7. The Phoneme Error Rate (PER) is the average edit dis-
tance between pairs mapped by m. The Out-Of-Vocabulary rate
(OOV) is calculated using the set of all reference dictionary entries
mapped by m. The Hypo/Ref ratio indicates how many hypothesis
entries in the extracted dictionary are mapped to a single reference
dictionary entry on average. The higher the Hypo/Ref ratio, the more
pronunciations are extracted unnecessarily.

We calculate the Character Error Rate (CER) to evaluate the
final word recognizer for the target language Slovene because it is

Fig. 7. Mapping m between extracted pronunciations and written
words for evaluation (Target language in this example: English)

more robust against minor spelling or segmentation errors than the
Word Error Rate (WER). Blanks are treated as separate characters.
In all experiments, the word recognizer uses context-dependent
acoustic models trained on 20 hours Croatian speech from the Glob-
alPhone project [40] to recognize Slovene. The preprocessing is
described in Sec. 4.1. The AM uses a fully-continuous 3-state left-
to-right HMM with emission probabilities modeled by Gaussian
Mixtures with diagonal covariances. For our context-dependent
AMs with different context sizes, we stopped the decision tree
splitting process at 2,000 triphones. After context clustering, a
merge-and-split training was applied, which selects the number of
Gaussians according to the amount of data (19 on average, 38k
in total). We did not apply adaptation techniques to improve the
acoustic models since Slovene transcriptions are not given. This
recognizer achieves a CER of 13.6% on the Slovene portion of the
BMED corpus with the correct Slovene pronunciation dictionary
and an 1-gram LM trained on the 200 BMED sentences (Tab. 6).

6.2. Experiments with Error-Free Phonetic Transcriptions

First we replace Step 1 in our approach in Sec. 4 and simulate a per-
fect phoneme recognizer with 0% Phoneme Recognition Error Rate
by replacing the words in the Slovene text with their canonical pro-
nunciation and removing word boundary markers. Thereby we ini-
tially refrain from dealing with pronunciation variants and phoneme
recognition errors.

Tab. 5 summarizes the results when the pronunciation dictionar-
ies are extracted from perfect phonetic transcriptions. As reference
we also report the performance of the method presented in [16] that
uses a different clustering algorithm and combines elements only
if they are aligned to the same source language word. In contrast
to this, we cluster solely on the basis of phonetic similarities. Set-
ting εoidx = ∞ constricts kmeansOidx to the standard k-means
algorithm. k is fixed to 280 in all experiments, which is an ini-
tial guess for the target language vocabulary size derived from the
Croatian vocabulary size. This initialization is not required to be
exact since in general the final size of the extracted dictionary dif-
fers from k (as shown in the third column of Tab. 5 and 7): On the
one hand, as described in Sec. 4.3, the dictionary size is increased
for each new cluster identified by the oidx criterion. On the other
hand, nbest-lattice occasionally calculates the same mean for
two separate clusters causing them to merge in k-means’ assignment
step.

We observe that on the designated task, kmeansOidx gener-
ally results in lower CERs than the method from [16], although the
Hypo/Ref ratio is higher. Limiting the maximum oidx with εoidx
effectively reduces both the OOV rate and the CER and tends to pro-
duce larger dictionaries. The best recognizer has a CER of 44.2%.
When blanks are ignored in the evaluation so that segmentation er-
rors do not affect the error rate, this system achieves a CER of 35.3%.

6.3. Experiments with Recognized Phoneme Sequences

In our scenario we use a Croatian phoneme recognizer to recognize
the Slovene target language speech in order to build the pronunci-

Language Model WER CER
0-gram 36.2% 15.7%
1-gram 32.0% 13.6%

Table 6. Recognition performance on Slovene with the correct ref-
erence dictionary (gold standard).



Method Src. Dict. PER OOV Hypo/ CER
Lang. Size. unique running Ref 0-gram LM 1-gram LM

Method from [16] de 80 57.8 76.4 59.6 1.13 66.0 –
Method from [16] en 74 49.8 76.4 60.3 1.04 62.4 –
Method from [16] hr 164 56.8 53.9 33.1 1.22 51.3 –
kmeansOidx, εoidx = ∞ de 280 55.6 39.3 26.2 1.62 52.1 50.7
kmeansOidx, εoidx = ∞ en 279 51.4 33.9 22.7 1.48 51.4 47.9
kmeansOidx, εoidx = ∞ hr 278 54.3 36.1 20.9 1.53 49.9 48.4
kmeansOidx, εoidx = ∞ All 275 47.3 42.1 25.4 1.67 47.3 46.1
kmeansOidx, εoidx = 3 All 282 46.3 42.5 25.2 1.72 46.6 46.2
kmeansOidx, εoidx = 2 All 318 47.5 36.1 20.5 1.75 45.9 45.1
kmeansOidx, εoidx = 1.5 All 324 49.0 34.6 19.7 1.74 45.8 44.4
kmeansOidx, εoidx = 1.1 All 322 48.3 35.0 20.0 1.74 45.2 44.2

Table 5. Results on error-free phonetic transcriptions (oracle experiments).

(a) 0-gram language model. (b) 1-gram language model.

Fig. 8. Performance of the final word recognizer using different dictionaries.

ation dictionary (Sec. 4.1). Therefore, we operate on phoneme se-
quences with a Phoneme Recognition Error Rate of 55.2% rather
than on error-free phonetic transcriptions. Tab. 7 shows our evalu-
ation measures for dictionaries extracted from recognized phoneme
sequences. Reducing εoidx leads to larger dictionaries and higher
Hypo/Ref ratios, but again significantly reduces the OOV rates. To
put it another way, a low εoidx produces noisier dictionaries that on
the other hand cover more Slovene words.

Ultimately the dictionaries need to prove their usefulness when
integrated in a word recognizer for the target language. Fig. 8 plots
the CER of the final recognizer over εoidx for the source languages
German, English, Croatian, and the combination of all of them. All
curves pass through their minimum at εoidx = 2 or εoidx = 1.5.
The best CER (55.5%) with only one source language is achieved
with English, εoidx = 2 and a unigram LM. Using English as source
language consistently performs better than Croatian. We believe that
this is due to the poor morphology of English: A small source lan-
guage vocabulary size reduces the number of parameters in the align-
ment model Model 3P so that they can be estimated more reliably.
We report a CER of 52.3% for our best system with a unigram LM
and a dictionary extracted using all source languages (εoidx = 2).
When blanks are ignored in the evaluation, this system achieves a
CER of 44.9%. Recognition examples are listed in Tab. 8 to get an
impression of the errors that still remain.

6.4. Human Evaluation

In addition to the automatic evaluation measures we perform a hu-
man evaluation for our best systems based on error-free and rec-
ognized phonetic transcriptions (44.2% and 52.3% CER): For 100
randomly selected recognition hypotheses from each system we ask
a Slovene native speaker to select one sentence from a alphabeti-
cally sorted list of all 200 BMED sentences that she thinks is the
correct output. If the answer (including reading, understanding, and
finding the sentence in the list) takes longer than Maximum Answer-
ing Time (MAT), we consider it as wrong. A correct answer with
a MAT of 15 seconds usually implies instant understanding. Tab. 9
shows the percentage of correct answers for both systems with dif-
ferent MATs. Surprisingly, the system using recognized phonetic
transcriptions outperforms the system using error-free transcriptions
when MAT≥ 30, indicating that a low OOV is more important for
understanding than a low PER or even CER. The speaker is able
to identify the correct output for 87.9% of the hypotheses from the
system based on recognized transcriptions within 1 minute.

7. CONCLUSION AND FUTURE WORK

We have tackled the task of bootstrapping an Automatic Speech
Recognition (ASR) system without an a priori given language model
(LM), a pronunciation dictionary, or transcribed speech data for the
target language Slovene – only untranscribed speech and transla-
tions to other resource-rich source languages of what was said were



available. In our scenario a human translator produced utterances in
the target language (Slovene) from prompts in resource-rich source
languages (Croatian, English, German). First, we cross-lingually
aligned the target language speech to the written translations and ob-
tained phoneme sequence segments corresponding to Slovene words,
but corrupted by recognition and alignment errors. Second, we in-
troduced a new clustering method kmeansOidx and grouped the
segments into clusters. The means of these clusters were written
as word pronunciations to the pronunciation dictionary. A Croat-
ian phoneme-to-grapheme model provided orthographic representa-
tions. The sizes of the clusters were used to estimate unigram LM
probabilities. Both the dictionary and the LM together with Croatian
acoustic models were then used to recognize Slovene.

We collected a small corpus (BMED) in four languages con-

Src.
εoidx

Dict. PER OOV Hypo/
Lang. Size. unique running Ref

de

∞ 257 58.0 43.6 29.2 1.60
6 258 57.2 44.3 29.8 1.62
4 257 57.4 42.9 29.1 1.58
3 262 57.3 38.9 27.1 1.51
2 334 60.5 32.9 23.0 1.75

1.5 333 58.9 31.1 21.5 1.70
1.1 328 58.8 32.5 22.3 1.71

en

∞ 251 55.3 42.5 30.1 1.53
6 252 55.4 42.1 29.9 1.53
4 255 56.3 43.6 29.2 1.58
3 266 57.5 41.4 29.8 1.59
2 306 56.5 37.9 24.7 1.73

1.5 308 56.6 39.3 26.3 1.78
1.1 306 56.5 35.4 22.8 1.66

hr

∞ 253 59.6 39.6 25.2 1.47
6 258 58.8 37.5 26.0 1.45
4 258 58.8 37.5 26.0 1.45
3 268 59.8 37.9 25.1 1.51
2 316 58.3 32.1 21.3 1.64

1.5 320 59.3 32.5 21.6 1.67
1.1 319 59.3 33.2 20.9 1.68

all

∞ 212 54.7 57.1 40.6 1.72
6 236 55.5 53.6 36.6 1.77
4 309 54.8 43.6 29.6 1.92
3 448 56.1 26.4 16.3 2.14
2 1145 64.8 5.0 3.0 4.26

1.5 1142 64.4 4.6 2.2 4.23
1.1 1171 64.2 5.0 2.3 4.35

Table 7. Quality of pronunciation dictionaries extracted from recog-
nized phoneme sequences with the kmeansOidx algorithm.

CER Alignment

18% REF: n i m a m č a * s a
HYP: n i m a m š a s a

25% REF: p o š k o d o v * a n s * e m
HYP: p o š k o d o v a n e s a m

31% REF: * * p o m e m b n o j e
HYP: p p o m i m b n a j e

40% REF: p o š k o d o v * a n s e m
HYP: * o ž g o d o v a n z a m

44% REF: l e ž i * t e u d * * o b n o
HYP: * i ž i t e u d u p n o

50% REF: z d r a * v s e m
HYP: z g r a l b z a m

Table 8. Example hypotheses and their CER (on recognized
phoneme sequences, unigram LM, εoidx = 2). Blanks are repre-
sented by the underscore character ( ).

MAT

System Error-Free Transcript.,
εoidx = 1.1
(44.2% CER)

Recognized Transcript.,
εoidx = 2

(52.3% CER)
15 Seconds 37.0% 27.3%
30 Seconds 65.0% 73.7%
45 Seconds 73.0% 83.8%
1 Minute 77.0% 87.9%

Table 9. Percentage of correct answers in the human evaluation (all
source languages, unigram LM).

sisting of 200 parallel sentences and 50 minutes Slovene speech to
evaluate our methods. Our best system achieved a CER of 52% on
this corpus, using a unigram LM and all three translations to extract
Slovene word pronunciations. For 87.9% of the recognizer hypothe-
ses a Slovene native speaker was able to spot the correct output in a
list of 200 sentences within 1 minute.

In the future, we plan to focus on acoustic modeling and ap-
ply phonetic discovery methods as in [30, 31, 32] on the target lan-
guage speech rather than a phoneme recognizer of a related lan-
guage. Acoustic models could be further improved by iteratively
recognizing the speech to provide target language transcriptions, and
then using the transcriptions to adapt the models. When it comes
to evaluating speech recognizers with partially misspelled words, a
automatic measure that is more meaningful than the CER, but less
erratic than the Word Error Rate is to be found. Although our results
on a limited domain and a small vocabulary are encouraging, the ev-
idence for the applicability of our method on a larger vocabulary and
a truly under-resourced or non-written language is still pending.
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