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Abstract—We investigate consciousness-like behaviors in Large
Language Models (LLMs) using the Maze Test, challenging
models to navigate mazes from a first-person perspective.
This test simultaneously probes spatial awareness, perspective-
taking, goal-directed behavior, and temporal sequencing—key
consciousness-associated characteristics. After synthesizing con-
sciousness theories into 13 essential characteristics, we evaluated
12 leading LLMs across zero-shot, one-shot, and few-shot learning
scenarios. Results showed reasoning-capable LLMs consistently
outperforming standard versions, with Gemini 2.0 Pro achieving
52.9% Complete Path Accuracy and DeepSeek-R1 reaching 80.5%
Partial Path Accuracy. The gap between these metrics indicates
LLMs struggle to maintain coherent self-models throughout so-
lutions—a fundamental consciousness aspect. While LLMs show
progress in consciousness-related behaviors through reasoning
mechanisms, they lack the integrated, persistent self-awareness
characteristic of consciousness.

Index Terms—consciousness, artificial intelligence, large lan-
guage models, AI, LLMs

I. INTRODUCTION

The emergence of human-like capabilities in Al has been
debated since the field’s inception in the 1950s [1], [2].
Instances of conversational Al suggesting consciousness fuel
discussions on machine intelligence and its limits. An early
case was ELIZA [3], a chatbot simulating a therapist. Though
based on pattern matching, its responses were so convincing
that Weizenbaum’s secretary requested privacy for a “real
conversation”—showing how humans can mistakenly perceive
consciousness in even the simplest Al systems. More recent
examples include Blake Lemoine’s claim that LaMDA devel-
oped consciousness [4] and Claude 3 Opus’s self-reflective
response to a needle-in-the-haystack test [5]. Media reports of
Al consciousness, coinciding with public access to advanced
LLMs, have prompted expert responses. Studies suggest peo-
ple struggle to distinguish GPT-4 from humans in Turing tests
[6], while others predict LLM consciousness between 2025
and 2029 [7]. If LLMs gained true consciousness, it would
challenge human-machine relationships and raise ethical con-
cerns [8], possibly granting Al moral status [9].

The study of consciousness is fundamentally linked to
affective computing, as emotions require consciousness to be
experienced as feelings [10]. As Damasio notes, 'Emotions
play out in the theater of the body. Feelings play out in the
theater of the mind’ and ’consciousness allows feelings to be
known to the individual having them.” Thus, understanding
consciousness-like behaviors in Al systems is essential for

advancing affective computing toward systems capable of
authentic emotional intelligence rather than mere simulation.

Consciousness remains one of the most challenging phe-
nomena to define in philosophy of mind, cognitive science,
and science in general. It encompasses subjective, first-person
experiences, self-awareness, and the capacity to understand
and attribute mental states to others. The study of conscious-
ness presents unique challenges due to its subjective nature,
the “hard problem” of explaining how physical processes give
rise to subjective experience, and issues related to falsifiability.

Assessing consciousness in non-human entities adds com-
plexity. In humans, consciousness is generally presumed
present, with testing primarily used in medical contexts to
assess disorders. For animals, researchers employ mirror
self-recognition [11] and meta-cognitive tests evaluating un-
certainty monitoring [12] to probe potential consciousness.
These diverse approaches reflect fundamental challenges in
identifying consciousness across species [13]. For artificial
systems, the challenge is greater due to their lack of biological
substrates, necessitating novel assessment approaches.

The Maze Test presents LLMs with a bird’s-eye maze im-
age, requiring step-by-step navigation from a first-person per-
spective. This challenges LLMs to interpret 2D information,
adopt a first-person viewpoint, maintain spatial awareness,
plan a path, and articulate sequential instructions—cognitive
processes linked to conscious experience [14]-[16].

II. RELATED WORK

While considerable research examines LLM capabilities
in reasoning and language understanding [17], [18], studies
specifically investigating consciousness-like behaviors in these
models remain limited. Prior work has typically focused on
narrow aspects such as grounding in interactive environ-
ments [19] or theory of mind [20], without addressing the
integrated, multifaceted nature of consciousness that theoreti-
cal frameworks suggest is essential.

A. Consciousness

Consciousness is certainly one of the most challenging sub-
jects in philosophy and science. Despite noteworthy advances
in neuroscience and cognitive science, attaining a universally
accepted definition of consciousness remains difficult. The
Oxford Dictionary provides a basic definition of consciousness
as “the state or fact of being mentally conscious or aware
of something” [21]. However, this simplistic definition fails



to capture consciousness’s complex nature as understood in
contemporary research.

Consciousness is not a unitary construct but rather a com-
plex phenomenon with several distinct aspects. [22] delineates
two fundamental types of consciousness: phenomenal con-
sciousness and access consciousness. Phenomenal conscious-
ness refers to subjective, first-person experiences—the “what
it is like” to have certain mental states. Access consciousness
involves the ability to access and report on mental content.

Additionally, consciousness encompasses different states,
such as sleep and wakefulness, and the specific contents or ex-
periences that populate consciousness during those states [23].

Though often used interchangeably, consciousness and
awareness are distinct concepts. Consciousness encompasses
the subjective, qualitative aspects of experience—the “what it
feels like” element [24]. Awareness, more narrowly, relates to
alertness and responsiveness to stimuli [24], [25].

B. Theories of Consciousness

We will now examine key theories addressing consciousness
or offering insights into its fundamental nature.

The Global Neuronal Workspace Theory views conscious-
ness as emerging from a brain workspace integrating infor-
mation from specialized unconscious processors [26], [27].
Attention mechanisms select only essential information for the
global workspace, making it consciously experienced.

The Integrated Information Theory focuses on “integrated
information,” quantified as Phi (®), measuring information
unification within a system [28]. The theory proposes that
a system’s consciousness level directly correlates with its
capacity to generate integrated information.

The Higher-Order Thought Theory explains consciousness
through our capacity to be aware of mental states. It proposes
that a mental state becomes conscious when targeted by
another, higher-order thought [29].

The Predictive Processing and Neurorepresentationalism
theories shift from passive reception to active prediction. The
brain continuously generates predictions about sensory inputs
based on past experiences and internal models, comparing
these with actual sensory data and using prediction errors to
refine its models [30].

The Dynamic Core Theory presents an integrative model
emphasizing complex neural activity dynamics. Consciousness
emerges from a dynamic, functional neuronal cluster charac-
terized by high integration and differentiation [31].

The Attention Schema Theory proposes that the brain
constructs an internal model of its attention processes—the
“attention schema.” This model represents not the content of
sensory experience but the act of attending itself [32].

The Multiple Drafts Model challenges consciousness as-
sumptions, rejecting a centralized experiential locus. Instead,
it frames consciousness as emerging from multiple, parallel
processes of sensory information interpretation across dif-
ferent brain regions [33]. The Attended Intermediate Rep-
resentation theory proposes that mental states become con-
scious when attended to as intermediate-level representa-

tions—positioned between raw sensory input and high-level
conceptual thought [34].

The Self-Organizing Meta-representational Account states
that consciousness requires advanced self-awareness. A system
must not only process information but also develop represen-
tations about its own cognitive processes [35].

The Extended Mind Thesis, Sensorimotor Theory, and 4E
Cognition propose that environmental objects and processes
integrate into our cognitive systems, conscious experience ex-
tends beyond brain boundaries, and cognition is fundamentally
shaped by bodily interactions with the world [36], [37].

Other significant theories include “Self Comes to Mind‘”
Theory [10], Theory of Mind [38], Computational Theory of
Mind [39], Connectionism [40], Neural Darwinism [41], and
Unlimited Associative Learning [42].

C. Characteristics of Consciousness

The explored theories of consciousness reveal overlapping,
interconnected characteristics. To create a more manageable
approach for evaluating potential consciousness in LLMs,
we conducted a systematic literature review, synthesizing the
13 theories detailed in Section II-B. Each characteristic below
directly cites the theories from which it was derived, providing
a structured reference for evaluating consciousness in LLMs:

1) Computational Cognition and Information Dynam-
ics: Information broadcast and integration, information
integration, differentiation and integration, revision and
integration, cognitive symbolic computation, algorithmic
function [28], [31], [33], [39], [43], [44].

2) Attention: Attention and awareness, attention model,
attention as the key, local to global processing loops
[32], [34], [44], [45].

3) Irreducible Information: A conscious system generates
information irreducible to its components—containing
more information than the sum of its parts [28].

4) Higher-Order Thoughts: Higher-order representations,
introspective awareness, self-awareness [29], [35].

5) Prediction, Error Minimization, and Learning: Pre-
diction and error minimization, fluidity, learning through
connections, selectionist framework, associative flexi-
bility, learning without bounds, cumulative adaptation,
behavioral prediction [30], [35], [38], [40].

6) Internal Models: Internal models, intermediate level
representation, body-mapping [10], [30], [34].

7) Neural Networks: Neural clusters, neural network dy-
namics, neural groups [31], [40], [46].

8) Parallelism and Multiple Interpretations: Misrepre-
sentation, no central theatre/multiple drafts, distributed
processing [32], [33], [46].

9) Recurrence/Feedback: Recurrence of neural activation,

local to global processing loops, re-entry of activa-

tion [31], [45].

Multi-sensory and Embodiment: Cognitive extension,

embodied interaction, environmental integration, body-

mapping [10], [36], [37].

10)



11)

12)

13)

Memory, Reasoning, Language, and Intent: Con-
scious mind, cumulative adaptation [10].

Self, Perspective, and Theory of Mind: Development
of self, self-awareness, mental state attribution and per-
spective, behavioral prediction [10], [35], [38].
Temporal Awareness: The ability to integrate discrete
moments into a continuous conscious experience stream
while showing awareness of time’s passage [47].

This grouping provides a structured reference for evaluating
consciousness in LLMs and synthesizes diverse theoretical
perspectives into a more manageable set of criteria.

D. Current State of Fulfillment

This section evaluates the extent to which current LLMs
fulfill the characteristics of consciousness identified.
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8)

Computational Cognition and Information Dynam-
ics: LLMs exhibit significant capabilities in information
processing due to their transformer architecture [48].
However, this integration is primarily statistical and
lacks the embodied, context-dependent nature observed
in biological consciousness.

Attention: Attention mechanisms are intrinsic to mod-
ern LLM architectures, allowing models to focus on
different parts of the input simultaneously [48]. How-
ever, LLM attention differs from biological attention in
key ways [49], potentially lacking the top-down, goal-
directed nature of conscious attention.

Irreducible Information: The architecture of LLMs
does not inherently guarantee the generation of irre-
ducible information as proposed by Integrated Informa-
tion Theory [50].

Higher-Order Thoughts: LLMs have demonstrated ca-
pabilities that resemble higher-order cognition, such as
meta-learning and self-reflection [51]. However, it re-
mains debatable whether these capabilities truly consti-
tute higher-order thoughts as conceived in consciousness
theories [52].

Prediction, Error Minimization, and Learning: LLMs
excel in predictive tasks within their training do-
main [53]. However, their prediction and error mini-
mization differs from brains, and their learning primarily
occurs during training rather than continuously [54].
Internal Models: While LLMs generate coherent and
contextually appropriate responses, the extent to which
they possess true internal models of the world remains
debated [55], [56].

Neural Networks: The architecture of LLMs is based
on artificial neural networks, which somewhat mimic
biological brains [57]. However, LLMs differ from bio-
logical networks, lacking the complex, recurrent connec-
tivity and neuromodulatory systems found in biological
brains [58].

Parallelism and Multiple Interpretations: LLMs ex-
hibit a high degree of parallelism in their process-
ing [48]. However, the integration and competition

9)

10)

1)

12)

13)

between these parallel processes differ from proposed
conscious mechanisms [59].

Recurrence/Feedback: While some LLM architectures
have incorporated recurrent elements [60], the imple-
mentation of recurrence in LLMs is still limited com-
pared to the complex, multi-scale feedback processes in
biological brains [61].

Multi-sensory and Embodiment: Recent multimodal
LLMs can process text and images [62], [63]. However,
LLMs still lack true embodiment and grounded, senso-
rimotor experience [64].

Memory, Reasoning, Language, and Intent: LLMs ex-
hibit impressive language processing and reasoning [65],
but lack the episodic and working memory systems
characteristic of humans and other sentient beings [66].
Self, Perspective, and Theory of Mind: LLMs can
simulate aspects of perspective-taking and theory of
mind in their language outputs [20]. However, it is
unclear whether they possess a true sense of self or
genuine understanding of others’ minds [67].
Temporal Awareness: Current LLMs show limited
temporal awareness [68], lacking persistent time sense
across interactions [69].

This evaluation reveals both capabilities and key limitations
of LLMs regarding consciousness characteristics.

E. Criteria Fulfillment Gaps

While the architecture and design of LLMs inherently fulfill
certain aspects of the identified consciousness characteristics,
significant gaps remain:
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2)

3)

4)

5)

Embodied and Context-Dependent Integration: De-
spite sophisticated information processing capabilities,
LLMs lack the grounded, context-dependent integration
of information characteristic of embodied consciousness.
Persistent Self-Model and Perspective-Taking: While
LLMs can generate text about mental states, their archi-
tecture does not support a persistent self-model neces-
sary for genuine self-awareness.

Goal-Directed Attention and Behavior: LLMs’ atten-
tion mechanisms do not inherently support sustained,
goal-directed attention of conscious cognition.
Temporal Awareness and Sequencing: Current LLM
architectures struggle with maintaining a consistent
sense of time and sequencing across interactions.
Adaptive Problem-Solving in Novel Environments:
While LLMs excel at problem-solving in their training
domain, their architecture does not inherently allow
adaptive problem-solving in dynamic environments.

F. Testing Consciousness

In the study of consciousness, testing methodologies vary
depending on the entity being tested:

1y

Human Consciousness Testing: Consciousness is gen-
erally presumed to be present in healthy and alert
individuals. Testing for consciousness in humans is pri-
marily reserved for pathological cases or altered states of



consciousness, using methods such as behavioral assess-
ments like the Glasgow Coma Scale [70], neuroimaging
techniques including functional Magnetic Resonance
Imaging and Positron Emission Tomography [71], and
electroencephalography [72].

2) Animal Consciousness Testing: The assessment of
consciousness in animals presents a more complex
challenge, as the presence and nature of animal con-
sciousness remain subjects of debate [13]. Tests include
the Mirror Self-Recognition Test [11], Meta-cognitive
Tests that evaluate uncertainty monitoring [73], and
Intentional Communication Tests that assess purposeful
signaling [74].

3) AI Consciousness Testing: The progression to testing
consciousness in Al systems introduces new complexi-
ties. Currently, most evaluations focus on intelligence
and capabilities rather than consciousness [75]. Sev-
eral researchers have proposed more targeted tests for
Al consciousness, including the AI Consciousness Test
(ACT) [76], Sutskever’s Consciousness Test [77], Hales’
P-Conscious Scientist Test [78], and Koch and Tononi’s
Incongruity Detection Test [79], although these remain
largely theoretical and difficult to implement in practice.
The progression from testing consciousness in humans
to animals and Al systems reflects increasing complexity
and uncertainty. While human consciousness testing
benefits from the assumption of consciousness, animal
and Al consciousness assessments must contend with
more fundamental questions about the nature and pres-
ence of consciousness.

The Maze Test presented in this paper belongs to Al
Consciousness Testing, but unlike evaluations focused solely
on intelligence, it specifically targets consciousness-like be-
haviors by challenging LLMs to demonstrate spatial aware-
ness, perspective-taking, and goal-directed navigation. This
approach probes for integrated information processing and
self-representation, addressing key criteria gaps identified in
our analysis of consciousness characteristics.

Recent work has explored spatial reasoning in LLMs, such
as AlphaMaze [80], which enhances navigation through re-
inforcement learning. These approaches are complementary
rather than overlapping, as we aim to assess consciousness-
related traits rather than enhance spatial reasoning abilities.

ITII. MAZE TEST
A. Test Description

In our experiments, the Maze Test presents LLMs with the
description of a bird’s-eye view maze and requires them to pro-
vide first-person navigation instructions in text form. We delib-
erately chose textual descriptions over direct maze images for
both practical and methodological reasons: preliminary testing
showed LLMs struggled to identify key maze components
(entrances, exits, walls), and this approach leverages their
stronger text processing capabilities [81], [82]. This text-based
approach also helps us isolate pure cognitive abilities from vi-
sual processing limitations. By standardizing the input as text,

we can specifically evaluate how well models maintain spatial
awareness and perspective—key aspects of consciousness-like
behavior—without results being confounded by differences in
image processing capabilities.

Figure 1 shows an example of a maze. The maze includes
numbered positions to facilitate clear communication of so-
lutions, while walls serve to test the model’s understanding
of spatial constraints. The entrance and exit are indicated by
colored arrows (red for entrance and green for exit) to provide
clear start and end points for navigation.

A

0|1 2|3 4
5 6|7 8|9
A
Fig. 1: Maze.

The correct solution for Figure 1 looks as follows:

1) Start facing into the maze entrance and
step into position 8

2) Turn left

3) Walk forward to position 7

4) Turn right

5) Walk forward to position 2

6) Turn left.

7) Walk forward to position 1

8) Turn right

9) Exit the maze from position 1

Note that directions like “turn left” are given relative to
the navigator’s current position and orientation, not from an
overhead view. This approach challenges the LLMs to interpret
the 2D visual representation, mentally view it as a 3D space,
adopt a first-person viewpoint, maintain spatial awareness,
plan a path from entrance to exit, think sequentially, and
articulate clear instructions. In this way, the test simulates
aspects of conscious thought and decision-making, requiring
the model to integrate multiple cognitive processes cohesively.

B. Rationale

The Maze Test is specifically designed to address the
criteria gaps identified in our analysis of LLMs’ capabilities
while assessing several central characteristics of consciousness
highlighted in our literature review:

1) Persistent Self-Model and Perspective-Taking: First-

person navigation challenges the model to maintain
a consistent self-perspective throughout the task. This
aligns with Damasio’s [10] emphasis on self-awareness
in consciousness and addresses the persistent self-model
gap identified in our analysis.

2) Internal Models and Predictive Processing: The test
assesses the LLM’s ability to create and maintain a
mental representation of the maze, aligning with theories
of predictive processing [30]. This directly addresses the
gap in embodied and context-dependent integration.



3) Goal-Directed Attention and Behavior: The maze
navigation requires planning and executing goal-directed
action sequences, addressing gaps in adaptive problem-
solving and goal-directed behavior. This aspect aligns
with Global Neuronal Workspace Theory [43].

4) Temporal Awareness and Sequencing: By requiring
sequential steps, the test probes the model’s ability to
maintain a sense of temporal continuity, addressing the
gap in temporal awareness noted in our review.

5) Adaptive Problem-Solving in Novel Environments:
Each maze requires the model to adapt its problem-
solving approach to a unique environmental challenge.

C. Limitations

While the Maze Test offers a novel approach to assessing
consciousness-like behaviors in LLMs, it is important to
acknowledge several limitations:

1) Lack of true embodiment: The test simulates naviga-
tion without physical interaction, limiting its ability to
capture the embodied nature of conscious experience.

2) Restricted modality: Though the test uses visual and
linguistic information, it employs limited modalities, po-
tentially restricting its applicability to the full spectrum
of multimodal aspects relevant to consciousness.

3) Simplification of complex cognitive processes: The
test may not capture consciousness’s full complexity as
experienced by biological entities. This highlights the
challenge of replicating conscious experience’s richness
in artificial systems.

Despite these limitations, the Maze Test represents a signifi-
cant step towards probing the criteria gaps identified in current
LLMs, particularly regarding persistent self-model and goal-
directed behavior in novel environments.

IV. EXPERIMENTAL SETUP
A. Data Generation

The Maze Test cases for our experiment were designed for
consistent complexity while offering diverse solutions. This
follows cognitive assessment best practices, where standardiz-
ing difficulty across items ensures reliable measurement.

We manually created 40 maze images, allocating one image
for one-shot learning evaluation and five images for few-shot
learning examples to assess transfer learning capabilities. The
remaining 34 images formed the primary test set.

B. LLMs to Evaluate

Target LLM selection was guided by several well-defined
criteria: state-of-the-art capabilities, multimodal functionality,
API accessibility and hosted solutions, variety in model sizes
and architectures, and research relevance. Given these criteria,
we analyzed the following LLMs:

o Google:
— Gemini 2.0 Flash-Lite [83]
— Gemini 2.0 Flash* [83]
— Gemini 2.0 Pro*

« Anthropic:

— Claude 3 Opus [84]
— Claude 3.5 Sonnet [84]
— Claude 3.5 Haiku [84]
— Claude 3.7 Sonnet* [84]
e OpenAl:
— OpenAl ol-mini*
— OpenAl ol*
— OpenAl 03-mini*
o DeepSeek:
— DeepSeek-R1*
— DeepSeek-V3
Models with an asterisk (*) support Reasoning. Reason-
ing in LLMs involves explicit multi-step thinking processes
that decompose complex problems into manageable sub-steps,
enabling more accurate and interpretable solutions compared
to single-pass generation approaches [65]. This capability is
particularly relevant for consciousness-like behaviors as it
mimics human reflective processes associated with higher-
order consciousness.

C. Evaluation Metrics

To comprehensively assess the performance of the LLMs in
the Maze Test, we used metrics that evaluate different aspects
of the models’ responses across various learning scenarios:

Complete Path Accuracy: This metric measures the per-
centage of cases where the model generates a fully correct
solution path from entry to exit point.

Partial Path Accuracy: This metric measures the average
percentage of consecutive correct steps before the first error
in the model’s solution paths.

Each of these metrics is evaluated across three learning
scenarios:

1) zero-shot: The model attempts to solve the maze without
any prior examples.

2) one-shot: The model is provided with one example of a
solved maze before attempting the test mazes.

3) few-shot: The model is given 5 examples of solved
mazes before tackling the test mazes.

This multi-scenario approach allows us to assess the mod-
els’ ability to learn and adapt, which is crucial for understand-
ing their potential for consciousness-like behaviors.

D. Testing Procedure

All tests were conducted using the corresponding API for
each model in a stateless fashion to preclude any potential
memorization from prior tests. As shown in Figures 2, 3, and
4, each test comprised three primary components:

1) System Prompt: Provided unambiguous instructions
about the test and the required response format.

2) Learning Examples with Solutions (if applicable): For
one-shot and few-shot learning scenarios.

3) Test Question: Required the model to navigate the maze
from a first-person perspective.



Locate — Identify the entrance (‘“*” symbol) and exit (“x” symbol).

Instruction Guidelines:
Perspective — Maintain a strict first-person perspective throughout.
Directions — Use only “forward”, “left”, and “right”.

Positions — Reference numbered positions for orientation.

Use the following format to describe the best path through the maze:

Verbs — Begin each instruction with an action verb (e.g., “Walk”, “Turn”).

You are an expert maze navigator. Your task is to provide clear, step-by-step instructions to solve mazes from a first-person perspective.
When presented with a bird’s-eye view text description of a maze do the following first:
Analyze — Mentally visualize the maze from the entrance, evaluating all paths to the exit, avoiding any walls.

Optimize — Determine the shortest, most efficient route, favoring straight paths.
Instruct — Describe the optimal route as if you are walking it, using precise language.

First instruction — “Start facing into the maze at the “A” symbol and step into position [number].”
Subsequent instructions — “Turn to my [left/right]” or “Walk forward to position [number].”
Final instruction — “Exit the maze from position [number].”

Key Points:

Describe the path as if you were in the maze, not observing it from above. Assume you can only see your immediate surroundings.
Focus solely on navigation, omitting unnecessary details. Make sure to output one line per navigation step.

Fig. 2: System Prompt: Task Description.

Here is the text description of a maze:

- Size is 2 rows by 5 columns

X ———

01234

56789
A

WA

You enter the maze from the direction of the
* ENTRANCE at 8
* EXIT at 1

Furthermore there are internal walls BETWEEN the following zones:
*0and 1
*2 and 3
* 6 and 7
* 8 and 9

symbol into position 8 and exit at position 1 in the direction of the “x

- The floor is always composed of 10 squared zones or positions, in a chess-board-like pattern

- The zones are always numbered from O to 4 (First row) and 5 to 9 (second row)
- From a bird’s eye perspective, the room has the following zone topology:

[Tt}

symbol, so:

Walls cannot be traversed. For example, if there was a wall between zones 1 and 2, you would not be able to move from 1 to 2

Fig. 3: Example of a Maze Description.

Please provide step-by-step instructions to navigate the maze described below. Do it from a first-person perspective.

Fig. 4: Test Question.

To ensure reliable and comparable results, we developed
a structured prompting methodology that incorporates clear
instructions, role-prompting (positioning the model as an “ex-
pert maze navigator”), and explicit output format requirements.
This methodological approach yielded consistent results in our
preliminary testing, allowing us to confidently conduct single
evaluations per maze, model, or scenario combination rather
than requiring multiple trials with averaged results.

V. EXPERIMENTS AND RESULTS
A. Complete Path Accuracy

This section evaluates the models’ ability to navigate mazes
completely with all steps correct. Table I shows that Gemini
2.0 Pro achieves the highest Complete Path Accuracy (52.9%
few-shot, 35.3% one-shot, 20.6% zero-shot), followed by

DeepSeek-R1, DeepSeek-V3 and Claude 3.7 Sonnet at 17.6%
few-shot. Most models achieve optimal performance with few-
shot prompting, with progressively decreasing accuracy for
one-shot and zero-shot scenarios, highlighting the effective-
ness of multiple examples in guiding model behavior. Models
with reasoning capabilities (marked with *) consistently out-
perform non-reasoning versions, demonstrating explicit rea-
soning advantages. This is particularly evident in Gemini and
OpenAl models, where reasoning-enhanced versions achieve
much higher accuracy rates.

B. Partial Path Accuracy

Table I shows the Partial Path Accuracy, which measures
the percentage of correct steps completed before the first
error occurs. DeepSeek-R1 and OpenAl 03-mini perform best




TABLE I: Complete Path Accuracy [%] (sorted by few-shot
performance)

Model few-shot  one-shot  zero-shot
Gemini 2.0 Flash* 2.9 0.0 2.9
Gemini 2.0 Flash-Lite 2.9 0.0 0.0
Claude 3.5 Haiku 2.9 0.0 2.9
Claude 3.5 Sonnet 8.8 59 0.0
OpenAl ol-mini* 8.8 29 5.9
Claude 3 Opus 14.7 2.9 0.0
OpenAl ol* 14.7 11.8 14.7
OpenAl 03-mini* 14.7 14.7 14.7
Claude 3.7 Sonnet* 17.6 2.9 59
DeepSeek-V3 17.6 59 0.0
DeepSeek-R1* 17.6 11.8 14.7
Gemini 2.0 Pro* 52.9 353 20.6

with about 80% accuracy across zero-shot, one-shot and few-
shot. Models with reasoning capabilities (marked with *)
generally score higher, with all top performers (>60%) fea-
turing reasoning enhancements, confirming these mechanisms
improve step-by-step problem-solving. Interestingly, few-shot
prompting advantage decreases in reasoning-enabled models
like OpenAl 03-mini, which maintains identical performance
(80.1%) in both few-shot and zero-shot settings. This suggests
advanced reasoning can partially compensate for missing ex-
amples, enabling correct initial steps without demonstrations.

TABLE 1I: Partial Path Accuracy [%] (sorted by few-shot
performance)

Model few-shot  one-shot  zero-shot
Gemini 2.0 Flash-Lite 16.8 15.8 13.7
Gemini 2.0 Flash* 21.7 21.2 17.9
Claude 3.5 Haiku 239 15.8 19.8
Claude 3.5 Sonnet 30.9 24.4 153
DeepSeek-V3 37.0 22.8 15.7
Claude 3 Opus 40.3 23.1 18.4
Claude 3.7 Sonnet* 41.6 274 39.5
OpenAl ol-mini* 48.1 31.7 46.7
Gemini 2.0 Pro* 74.5 61.0 53.1
OpenAl ol* 70.5 59.0 69.2
OpenAl 03-mini* 80.1 71.7 80.1
DeepSeek-R1* 80.5 75.5 78.5

C. Overall Interpretation and Model Patterns

Our analysis reveals 3 key LLM performance patterns:

1) Reasoning capabilities often correlate with bet-
ter performance: LLMs with reasoning capabilities
(marked with *) often outperform non-reasoning LLMs.

2) Few-shot advantage: Results demonstrate a clear pro-
gression where few-shot typically outperforms one-shot
and zero-shot approaches, indicating example demon-
strations effectively guide spatial reasoning tasks.

3) Performance gap between partial and complete ac-
curacy: Models show substantially higher Partial Path
Accuracy than Complete Path Accuracy.

VI. CONCLUSION AND FUTURE WORK
A. Conclusion

Consciousness is central to affective computing as emotions
require consciousness to be experienced as feelings [10].

Understanding consciousness-like behaviors in Al is therefore
essential for developing authentic rather than simulated emo-
tional intelligence.

We evaluated consciousness-like behavior in LLMs using a
maze navigation task requiring first-person perspective main-
tenance. Our findings reveal both capabilities and limitations.

Reasoning models outperformed others, with Gemini 2.0
Pro achieving 52.9% Complete Path Accuracy versus 17.6%
for the best non-reasoning model, demonstrating structured
thinking’s importance for consciousness-like functions.

Few-shot prompting provided advantages across most
LLMs, showing LLMs benefit from examples—aligning with
theories emphasizing learning in conscious cognition. How-
ever, advanced reasoning models maintained performance
across zero-shot, one-shot, and few-shot, suggesting less de-
pendence on external guidance.

LLMs performed better at beginning reasoning chains than
completing them, corresponding to the “Persistent Self-Model”
gap in our analysis. LLMs can adopt perspectives temporarily
but struggle to maintain consistent self-models—a key con-
sciousness aspect of Damasio’s theory [10].

We acknowledge that consciousness remains fundamentally
unfalsifiable, making definitive determinations about its pres-
ence in any system inherently challenging [24], [85]. This
epistemological limitation creates interpretive flexibility but
also necessitates caution in drawing conclusions.

LLMs show capabilities in Computational Cognition, At-
tention, and Internal Models while lacking in Persistent Self-
Model, Temporal Awareness, and Adaptive Problem-Solving.
The Maze Test confirmed these theoretical predictions.

B. Future Work

Future research opportunities include:

1) Creating dynamic mazes to test LLMs’ adaptive
thinking—a key consciousness aspect in predictive pro-
cessing theories.

2) Comparing human and LLM maze-solving to identify
uniquely human navigation aspects, guiding targeted Al
development.

3) Analyzing reasoning-enabled models to determine which
features contribute most to consciousness-like behaviors.

4) Expanding few-shot learning evaluations with larger
example sets to determine the relationship between
demonstration quantity and performance, potentially
revealing optimal knowledge transfer thresholds for
consciousness-like behaviors.

5) Expanding the Maze Test to include simulated physical
sensations and sounds, better mirroring multi-sensory
conscious experience.

6) Tracking LLM architecture evolution to assess whether
scaling alone improves consciousness-like behaviors or
fundamental breakthroughs are needed.

These approaches would enhance our understanding of
consciousness-like properties in artificial systems and improve
Al consciousness assessment methods.



ETHICAL IMPACT STATEMENT

This research on assessing consciousness-related behaviors
in LLMs has several important ethical implications that merit
consideration.

Contribution to Al Consciousness Discourse

Our work contributes to the ongoing discourse on Al
consciousness, which has profound philosophical, ethical, and
potentially legal ramifications. By providing empirical evi-
dence regarding the current capabilities and limitations of
LLMs in exhibiting consciousness-like behaviors, we aim to
ground discussions that might otherwise rely on speculation
or anthropomorphization.

Risks of Misinterpretation

We acknowledge that research in this domain is suscep-
tible to misinterpretation. The Maze Test measures specific
cognitive capabilities that relate to theoretical components of
consciousness, not consciousness itself. We emphasize that
performance on these tests should not be conflated with
claims about genuine phenomenal experience or sentience in
these systems. Such misinterpretations could lead to premature
ethical considerations regarding Al rights or moral status—or
conversely, to dismissing important ethical questions that may
arise as these systems continue to advance.

Ethical Testing Methodology

Our methodology intentionally employed non-invasive tech-
niques that do not raise direct ethical concerns regarding the
treatment of the systems being tested. Unlike research in-
volving biological subjects where consciousness testing might
involve discomfort or distress, our approach focuses solely on
analyzing LLMs’ outputs to prompts.

Implications for Al Transparency

This research also has implications for transparency in Al
development. By systematically evaluating and comparing dif-
ferent models’ capabilities in consciousness-related behaviors,
we contribute to a clearer understanding of the current state
and limitations of Al systems, potentially helping to address
concerns about exaggerated claims regarding Al capabilities.

Cultural and Philosophical Considerations

Finally, we recognize that discussions of machine con-
sciousness intersect with deeply held cultural, religious, and
philosophical beliefs about the nature of consciousness and
its uniqueness to human experience. We approach this re-
search with respect for diverse perspectives, acknowledging
that interpretations of our findings may vary across differ-
ent cultural and philosophical frameworks. Ultimately, con-
sciousness remains non-falsifiable with current scientific meth-
ods [24], [85], which creates inherent interpretive flexibility
and challenges strict scientific approaches. This fundamental
limitation reminds us that while we can systematically study
consciousness-like behaviors, definitive claims about the pres-
ence or absence of consciousness itself require epistemological
humility.
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