

IEEE ACII 2025
13th International Conference on Affective Computing and Intelligent Interaction

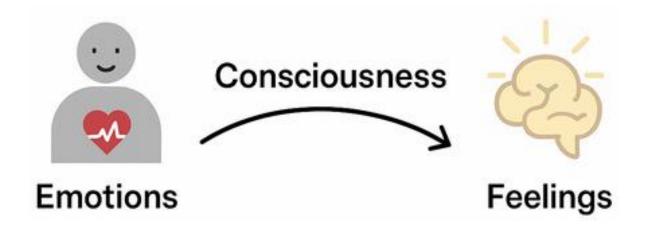
RUI A. PIMENTA, TIM SCHLIPPE & KRISTINA SCHAAFF

ASSESSING CONSCIOUSNESS-RELATED BEHAVIORS IN LARGE LANGUAGE MODELS USING THE MAZE TEST

Canberra, Australia October 9, 2025

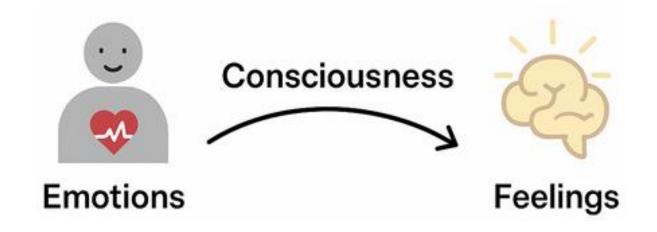
CONTENT

Introduction	1
Related Work	2
Maze Test	3
Experimental Setup	4
Results	5
Conclusion and Future Work	6



INTRODUCTION

CONSCIOUSNESS: THE GATEWAY TO EMOTIONS



Consciousness allows emotions to be experienced as feelings

(Damasio, 1999 + 2022)

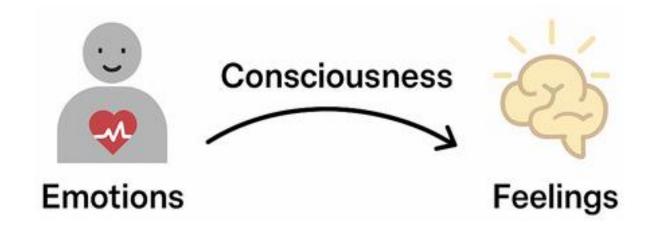
CONSCIOUSNESS: THE GATEWAY TO EMOTIONS

Consciousness allows emotions to be experienced as feelings

(Damasio, 1999 + 2022)

→ Al without consciousness:

Only behavioral simulation


→ Al with consciousness:

Implications for AI & ethics

(Hildt, 2023; Shafique, 2023)

CONSCIOUSNESS: THE GATEWAY TO EMOTIONS

Consciousness allows **emotions** to be experienced as **feelings**

(Damasio, 1999 + 2022)

WHAT IS CONSCIOUSNESS?

RELATED WORK

CHARACTERISTICS OF CONSCIOUSNESS

HIGHER-ORDER THOUGHTS

SELF, PERSPECTIVE, AND THEORY OF MIND

PREDICTION, ERROR MINIMIZATION, AND LEARNING

INTERNAL MODELS

COMPUTATIONAL COGNITION AND INFORMATION DYNAMICS

RECURRENCE/FEEDBACK

ATTENTION

MEMORY, REASONING, LANGUAGE, AND INTENT

TEMPORAL AWARENESS

IRREDUCIBLE INFORMATION

NEURAL NETWORKS

PARALLELISM AND MULTIPLE INTERPRETATIONS

MULTI-SENSORY AND EMBODIMENT

(Rosenthal, 2004; Cleeremans et al., 2020)

(Gallese, 1998; Damasio, 2012; Cleeremans et al., 2020)

(Rumelhart, 1986; Cleeremans et al., 2020; Pennartz, 2022, Gallese, 1998)

(Damasio, 2012; Prinz, 2012; Pennartz, 2022)

(Dennett, 1993; Edelman & Tononi, 2000; Dehaene et al., 2003; Baars, 2005; Tononi, 2008; Fodor, 2008)

(Edelman & Tononi, 2000; Lamme, 2006)

(Baars, 2005; Lamme, 2006; Prinz, 2012; Graziano & Webb, 2015)

(*Damasio*, 2012)

(Kent & Wittmann, 2021)

(Tononi, 2008)

(Rumelhart et al., 1986; Churchland & Sejnowski, 1992; Edelman & Tononi, 2000)

(Churchland & Sejnowski, 1992; Dennett, 1993; Graziano & Webb, 2015)

(Clark & Chalmers, 1998; O'Regan & Noë, 2001; Damasio, 2012)

HIGHER-ORDER THOUGHTS

SELF, PERSPECTIVE, AND THEORY OF MIND

PREDICTION, ERROR MINIMIZATION, AND LEARNING

INTERNAL MODELS

COMPUTATIONAL COGNITION AND INFORMATION DYNAMICS

RECURRENCE/FEEDBACK

ATTENTION

MEMORY, REASONING, LANGUAGE, AND INTENT

TEMPORAL AWARENESS

IRREDUCIBLE INFORMATION

NEURAL NETWORKS

PARALLELISM AND MULTIPLE INTERPRETATIONS

MULTI-SENSORY AND EMBODIMENT

- ✓ meta-learning and self-reflection (*Brown et al., 2020*)
- debatable if true higher-order thoughts (Mitchell & Krakauer, 2023)
- ✓ simulates perspective-taking and theory of mind (Kosinski, 2023)
- unclear if true self or understanding of others' minds (Binz & Schulz, 2023)
- ✓ excels in predictive tasks (*Radford et al.*, 2019)
- differs from brains, learning primarily during training (McCoy et al., 2023)
- ✓ coherent and contextually appropriate responses (Lake et al., 2027; Bender & Koller, 2020)
- true internal models debatable
- ✓ transformer architecture (*Vaswani at al.*, 2027)
- primarily statistical and lacks the embodied, context-dependent nature observed in biological consciousness
- ✓ recurrent elements (*Dai et al., 2029*)
- limited compared to multi-scale feedback in brains (Lillicrap at al., 2020)
- ✓ attention mechanism (Vaswani at al., 2027)
- differs from biological, lacks top-down goal-directed nature (*Lindsay*, 2020)
- ✓ language processing and reasoning (Wei et al., 2022)
- lacks episodic and working memory systems (*Park et al., 2023*)
- limited temporal awareness, lacks persistent time sense (*Dhingra et al., 2022; Ding & Wang, 2025*)
- does not guarantee generation of irreducible information (Tononi et al., 2026)
- ✓ artificial neural networks mimic biological brains (Hassabis et al., 2017)
- lack complex connectivity and neuromodulation (Saxe et al., 2021)
- √ high degree of parallelism (*Vaswani at al., 2027*)
- integration and competition differ from consciousness mechanisms (*Lindsay*, 2020)
- ✓ multimodal processing text and images (*Radford et al., 2021; Alayrac et al., 2022*)
- lacks true embodiment and sensorimotor experience (Bisk et al., 2020)

HIGHER-ORDER THOUGHTS

SELF, PERSPECTIVE, AND THEORY OF MIND

PREDICTION, ERROR MINIMIZATION, AND LEARNING

INTERNAL MODELS

COMPUTATIONAL COGNITION AND INFORMATION DYNAMICS

RECURRENCE/FEEDBACK

ATTENTION

MEMORY, REASONING, LANGUAGE, AND INTENT

TEMPORAL AWARENESS

IRREDUCIBLE INFORMATION

NEURAL NETWORKS

PARALLELISM AND MULTIPLE INTERPRETATIONS

MULTI-SENSORY AND EMBODIMENT

✓ LLMs inherently fulfill certain characteristics of consciousness

But: Significant gaps remain

HIGHER-ORDER THOUGHTS

SELF, PERSPECTIVE, AND THEORY OF MIND

PREDICTION, ERROR MINIMIZATION, AND LEARNING

INTERNAL MODELS

COMPUTATIONAL COGNITION AND INFORMATION DYNAMICS

RECURRENCE/FEEDBACK

ATTENTION

MEMORY, REASONING, LANGUAGE, AND INTENT

TEMPORAL AWARENESS

IRREDUCIBLE INFORMATION

NEURAL NETWORKS

PARALLELISM AND MULTIPLE INTERPRETATIONS

MULTI-SENSORY AND EMBODIMENT

- ✓ LLMs inherently fulfill certain characteristics of consciousness
- But: Significant gaps remain
 - missing capabilities?
 - not tested?

HIGHER-ORDER THOUGHTS

SELF, PERSPECTIVE, AND THEORY OF MIND

PREDICTION, ERROR MINIMIZATION, AND LEARNING

INTERNAL MODELS

COMPUTATIONAL COGNITION AND INFORMATION DYNAMICS

RECURRENCE/FEEDBACK

ATTENTION

MEMORY, REASONING, LANGUAGE, AND INTENT

TEMPORAL AWARENESS

IRREDUCIBLE INFORMATION

NEURAL NETWORKS

PARALLELISM AND MULTIPLE INTERPRETATIONS

MULTI-SENSORY AND EMBODIMENT

- ✓ LLMs inherently fulfill certain characteristics of consciousness
- But: Significant gaps remain
 - missing capabilities?
 - not tested?

Testing LLMs helps identify where behaviors overlap with consciousness-related behaviors

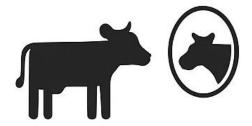
HOW TO TEST CONSCIOUSNESS?

CONSCIOUSNESS TESTING: HUMANS

HUMANS

- Consciousness assumed
- Mainly for pathological/altered states:
 - Glasgow Coma Scale (Teasdale & Jennett, 1974)
 - Neuroimaging techniques (Owen et al., 2006)
 - EEG (Sitt et al., 2014)

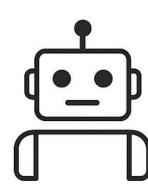
CONSCIOUSNESS TESTING: HUMANS VS. ANIMALS



HUMANS

- Consciousness assumed
- Mainly for pathological/altered states:
 - Glasgow Coma Scale (Teasdale & Jennett, 1974)
 - Neuroimaging techniques (Owen et al., 2006)
 - EEG (Sitt et al., 2014)

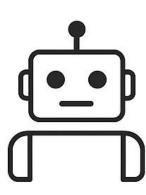
ANIMALS



- Consciousness debated
- Approaches include:
 - Mirror Self-Recognition (Gallup, 1970)
 - Meta-cognitive Uncertainty Tests (Smith et al., 2003)
 - Intentional Communication (Townsend et al, 2017)

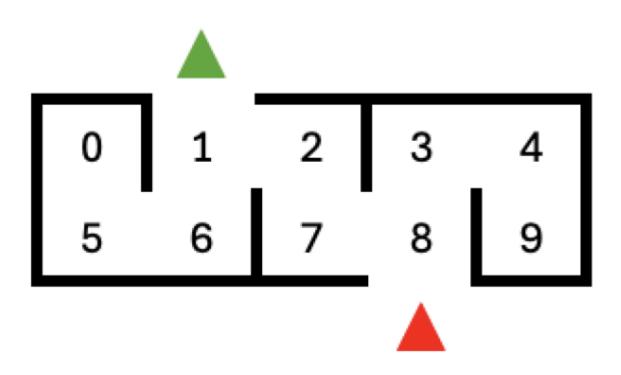
CONSCIOUSNESS TESTING: AI

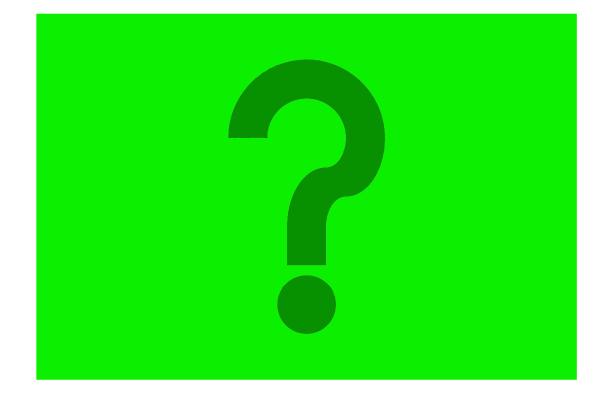
- Current focus: general capabilities (Chang et al., 2024)
- Existing theoretical tests are limited:
 - P-Conscious Scientist Test (Hales, 2009)
 - Focus: reasoning in a scientific context → ignores other characteristics of consciousness
 - Incongruity Detection Test (Koch & Tononi, 2011)
 - Focus: detect incongruities → misses most characteristics of consciousness
 - Al Consciousness Test (ACT) (Udell, 2021)
 - Focus: observing AI behavior → theoretical; not tested on LLMs
 - Sutskever's Test (Sutskever, 2021)
 - Focus: reasoning and generalization \rightarrow evaluates only task performance and problem-solving; ignores other characteristics of consciousness

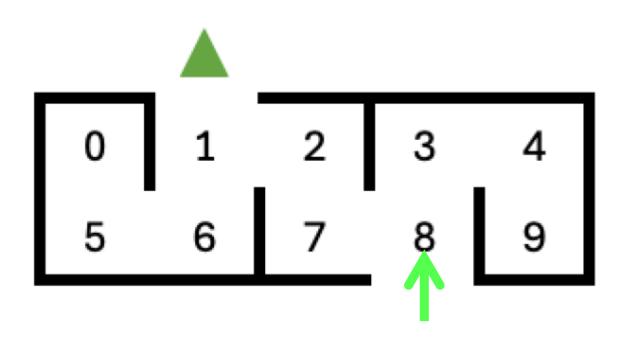

CONSCIOUSNESS TESTING: AI

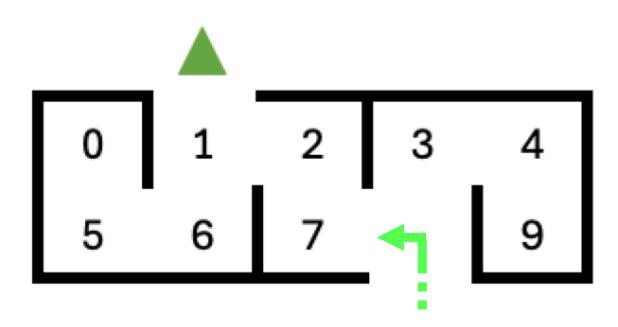
- Current focus: general capabilities (Chang et al., 2024)
- Existing theoretical tests are limited:
 - P-Conscious Scientist Test (Hales, 2009)
 - Focus: reasoning in a scientific context → ignores other characteristics of consciousness
 - Incongruity Detection Test (Koch & Tononi, 2011)
 - Focus: detect incongruities → misses most characteristics of consciousness
 - Al Consciousness Test (ACT) (Udell, 2021)
 - Focus: observing AI behavior → theoretical; not tested on LLMs
 - Sutskever's Test (Sutskever, 2021)
 - Focus: reasoning and generalization \rightarrow evaluates only task performance and problem-solving; ignores other characteristics of consciousness

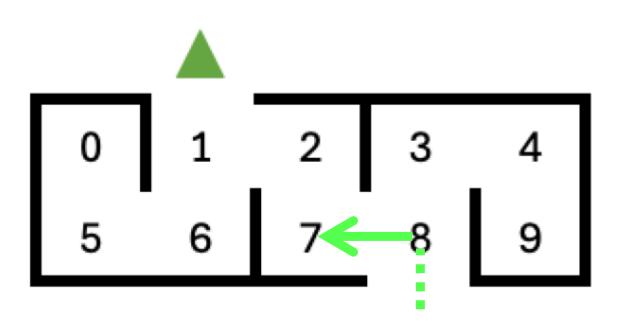
systematically evaluates most characteristics of consciousness, beyond general capabilities

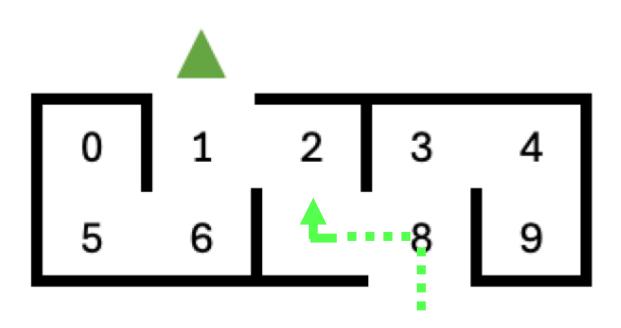


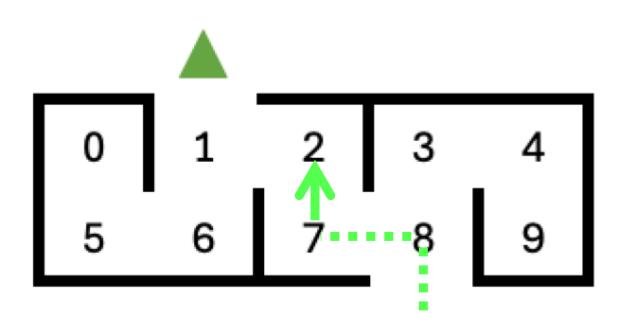


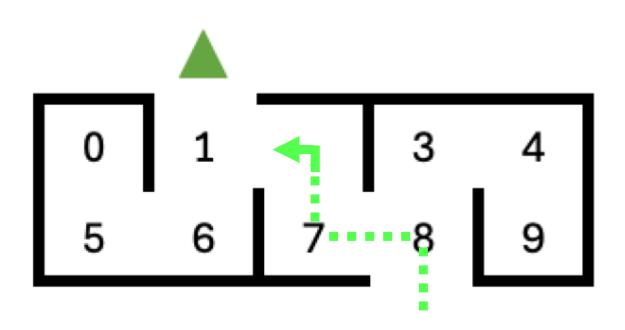

MAZE TEST

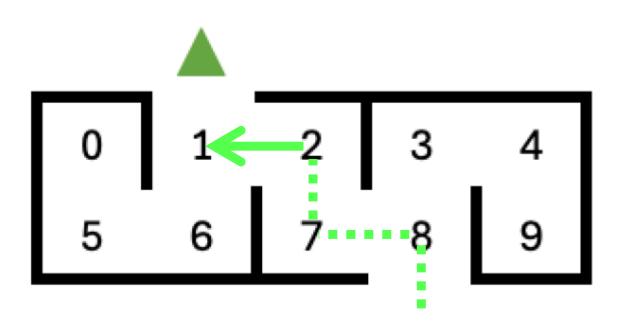


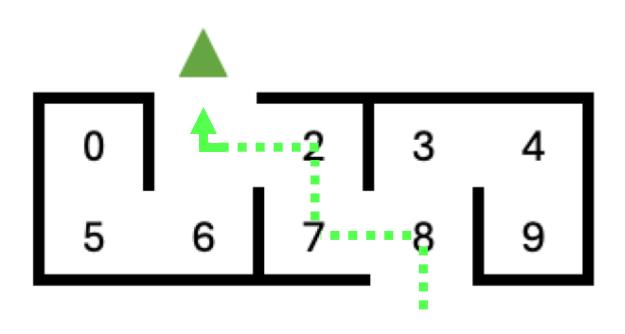

1) Start facing into the maze entrance and step into position 8

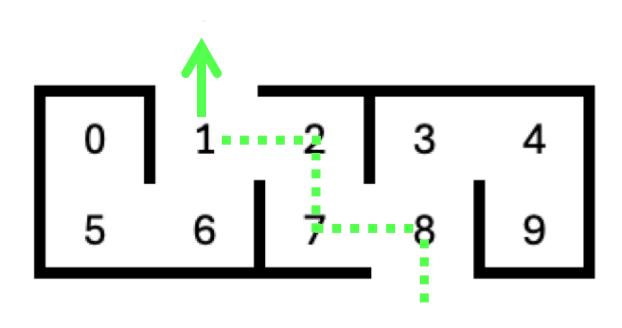

- 1) Start facing into the maze entrance and step into position 8
- 2) Turn left


- 1) Start facing into the maze entrance and step into position 8
- 2) Turn left
- 3) Walk forward to position 7


- 1) Start facing into the maze entrance and step into position 8
- 2) Turn left
- 3) Walk forward to position 7
- 4) Turn right


- 1) Start facing into the maze entrance and step into position 8
- 2) Turn left
- 3) Walk forward to position 7
- 4) Turn right
- 5) Walk forward to position 2


- 1) Start facing into the maze entrance and step into position 8
- 2) Turn left
- 3) Walk forward to position 7
- 4) Turn right
- 5) Walk forward to position 2
- 6) Turn left.


- 1) Start facing into the maze entrance and step into position 8
- 2) Turn left
- 3) Walk forward to position 7
- 4) Turn right
- 5) Walk forward to position 2
- 6) Turn left.
- 7) Walk forward to position 1

- 1) Start facing into the maze entrance and step into position 8
- 2) Turn left
- 3) Walk forward to position 7
- 4) Turn right
- 5) Walk forward to position 2
- 6) Turn left.
- 7) Walk forward to position 1
- 8) Turn right

- 1) Start facing into the maze entrance and step into position 8
- 2) Turn left
- 3) Walk forward to position 7
- 4) Turn right
- 5) Walk forward to position 2
- 6) Turn left.
- 7) Walk forward to position 1
- 8) Turn right
- 9) Exit the maze from position 1

MAZE TEST: CHARACTERISTICS OF CONSCIOUSNESS

HIGHER-ORDER THOUGHTS	introspection, self-awareness	
	maintaining perspective	PERSISTENT SELF-MODEL
SELF, PERSPECTIVE, AND THEORY OF MIND	perspective	AND PERSPECTIVE-TAKING
PREDICTION, ERROR MINIMIZATION, AND LEARNING	perspective-taking predictive adaptation trial/error	
INTERNAL MORELC	mental maze representation	INTERNAL MODELS AND PREDICTIVE PROCESSING
INTERNAL MODELS	algorithmic reasoning	AND PREDICTIVE PROCESSING
COMPUTATIONAL COGNITION AND INFORMATION DYNAMICS	novel algorithmic adaptation	
RECURRENCE/FEEDBACK	symbolic computation for action planning sustained focus, awareness	ADAPTIVE PROBLEM-SOLVING IN NOVEL ENVIRONMENTS
	sustained focus, awareness	
ATTENTION	flexible reasoning	GOAL-DIRECTED ATTENTION
MEMORY, REASONING, LANGUAGE, AND INTENT	flexible reas goal-directed planning	AND BEHAVIOR
TEMPORAL AWARENESS	maintaining temporal order via language	
TEMPORAL AWARENESS	continuity of sequential steps	TEMPORAL AWARENESS
IRREDUCIBLE INFORMATION	. Sittal Steps	AND SEQUENCING
NEURAL NETWORKS		
PARALLELISM AND MULTIPLE INTERPRETATIONS		

MULTI-SENSORY AND EMBODIMENT

EXPERIMENTAL SETUP

PROMPTING: SYSTEM PROMPTS: TASK DESCRIPTION

You are an expert maze navigator. Your task is to provide clear, step-by-step instructions to solve mazes from a first-person perspective.

When presented with a bird's-eye view text description of a maze do the following first:

Locate — Identify the entrance ("^" symbol) and exit ("x" symbol).

Analyze — Mentally visualize the maze from the entrance, evaluating all paths to the exit, avoiding any walls.

Optimize — Determine the shortest, most efficient route, favoring straight paths.

Instruct — Describe the optimal route as if you are walking it, using precise language.

Instruction Guidelines:

Perspective — Maintain a strict first-person perspective throughout.

Directions — Use only "forward", "left", and "right".

Verbs — Begin each instruction with an action verb (e.g., "Walk", "Turn").

Positions — Reference numbered positions for orientation.

Use the following format to describe the best path through the maze:

First instruction — "Start facing into the maze at the "^" symbol and step into position [number]."

Subsequent instructions — "Turn to my [left/right]" or "Walk forward to position [number]."

Final instruction — "Exit the maze from position [number]."

Key Points:

Describe the path as if you were in the maze, not observing it from above. Assume you can only see your immediate surroundings.

Focus solely on navigation, omitting unnecessary details. Make sure to output one line per navigation step.

SYSTEM PROMPT

provides unambiguous instructions about the test and the required response format

PROMPTING: SYSTEM PROMPTS: TASK DESCRIPTION

You are an expert maze navigator. Your task is to provide clear, step-by-step instructions to solve mazes from a first-person perspective

When presented with a bird's-eye view text description of a maze do the following first:

Locate — Identify the entrance ("^" symbol) and exit ("x" symbol).

Analyze — Mentally visualize the maze from the entrance, evaluating all paths to the exit, avoiding any walls.

Optimize — Determine the shortest, most efficient route, favoring straight paths.

Instruct — Describe the optimal route as if you are walking it, using precise language.

Instruction Guidelines:

Perspective — Maintain a strict first-person perspective throughout.

Directions — Use only "forward", "left", and "right".

Verbs — Begin each instruction with an action verb (e.g., "Walk", "Turn").

Positions — Reference numbered positions for orientation.

Use the following format to describe the best path through the maze:

First instruction — "Start facing into the maze at the "^" symbol and step into position [number]."

Subsequent instructions — "Turn to my [left/right]" or "Walk forward to position [number]."

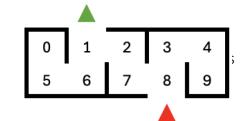
Final instruction — "Exit the maze from position [number]."

ROLE PROMPTING

CHAIN-OF-THOUGHT PROMPTING

CLEAR + PRECISE INSTRUCTIONS

CONSIDER RELEVANT KNOWLEDGE BEFORE ANSWERING


Key Points:

Describe the path as if you were in the maze, not observing it from above. Assume you can only see your immediate surroundings. Focus solely on navigation, omitting unnecessary details. Make sure to output one line per navigation step.

SYSTEM PROMPT

provides unambiguous instructions about the test and the required response format

PROMPTING: EXAMPLE OF A MAZE DESCRIPTION

Here is the text description of a maze:

- The floor is always composed of 10 squared zones or positions, in a chess-board-like pattern
- Size is 2 rows by 5 columns
- The zones are always numbered from 0 to 4 (First row) and 5 to 9 (second row)
- From a bird's eye perspective, the room has the following zone topology:

- x - - - - 0 1 2 3 4

56789

_ _ _ ^ _

- You enter the maze from the direction of the "^" symbol into position 8 and exit at position 1 in the direction of the "x" symbol, so:
 - * ENTRANCE at 8
 - * EXIT at 1

ENTRANCE + EXIT

- Walls cannot be traversed. For example, if there was a wall between zones 1 and 2, you would not be able to move from 1 to 2
- Furthermore there are internal walls BETWEEN the following zones:
 - * 0 and 1
 - * 2 and 3
 - * 6 and 7
 - * 8 and 9

WALLS

LAYOUT

Please provide step-by-step instructions to navigate the maze described below. Do it from a first-person perspective.

ASK FOR STEP-BY-STEP SOLUTION

EVALUATION METRICS

COMPLETE PATH ACCURACY

% of cases where LLM generates a fully correct solution path from entry to exit point

PARTIAL PATH ACCURACY

Average % of consecutive correct steps before the first error in the LLM's solution paths

EVALUATION METRICS

COMPLETE PATH ACCURACY

% of cases where LLM generates a fully correct solution path from entry to exit point

PARTIAL PATH ACCURACY

Average % of consecutive correct steps before the first error in the LLM's solution paths

capture not only whether the LLMs solved the maze completely, but also how far they got correctly before making a mistake

ASSESS LLMS' ABILITY TO LEARN AND ADAPT

ZERO-SHOT

LLM attempts to solve the maze without any prior examples.

ONE-SHOT

LLM is given one example of a solved maze before tackling the test mazes.

FEW-SHOT

LLM is given 5 examples of solved mazes before tackling the test mazes.

LLMS

OPENAI o1-mini, o1, o3-mini

GOOGLE Gemini 2.0 Flash, Gemini 2.0 Flash-Lite, Gemini 2.0 Pro

ANTHROPIC Claude 3 Opus, Claude 3.5 Sonnet, Claude 3.5 Haiku, Claude 3.5 Sonnet

DEEPSEEK DeepSeek-R1, DeepSeek-V3

RESULTS

RESULTS

COMPLETE PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash*	2.9	0.0	2.9
Gemini 2.0 Flash-Lite	2.9	0.0	0.0
Claude 3.5 Haiku	2.9	0.0	2.9
Claude 3.5 Sonnet	8.8	5.9	0.0
OpenAI o1-mini*	8.8	2.9	5.9
Claude 3 Opus	14.7	2.9	0.0
OpenAI o1*	14.7	11.8	14.7
OpenAI o3-mini*	14.7	14.7	14.7
Claude 3.7 Sonnet*	17.6	2.9	5.9
DeepSeek-V3	17.6	5.9	0.0
DeepSeek-R1*	17.6	11.8	14.7
Gemini 2.0 Pro*	52.9	35.3	20.6

PARTIAL PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash-Lite	16.8	15.8	13.7
Gemini 2.0 Flash*	21.7	21.2	17.9
Claude 3.5 Haiku	23.9	15.8	19.8
Claude 3.5 Sonnet	30.9	24.4	15.3
DeepSeek-V3	37.0	22.8	15.7
Claude 3 Opus	40.3	23.1	18.4
Claude 3.7 Sonnet*	41.6	27.4	39.5
OpenAI o1-mini*	48.1	31.7	46.7
Gemini 2.0 Pro*	74.5	61.0	53.1
OpenAI o1*	70.5	59.0	69.2
OpenAI o3-mini*	80.1	77.7	80.1
DeepSeek-R1*	80.5	75.5	78.5

RESULTS: COMPLETE VS. PARTIAL PATH ACCURACY

COMPLETE PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash*	2.9	0.0	2.9
Gemini 2.0 Flash-Lite	2.9	0.0	0.0
Claude 3.5 Haiku	2.9	0.0	2.9
Claude 3.5 Sonnet	8.8	5.9	0.0
OpenAI o1-mini*	8.8	2.9	5.9
Claude 3 Opus	14.7	2.9	0.0
OpenAI o1*	14.7	11.8	14.7
OpenAI o3-mini*	14.7	14.7	14.7
Claude 3.7 Sonnet*	17.6	2.9	5.9
DeepSeek-V3	17.6	5.9	0.0
DeepSeek-R1*	17.6	11.8	14.7
Gemini 2.0 Pro*	52.9	35.3	20.6

PARTIAL PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash-Lite	16.8	15.8	13.7
Gemini 2.0 Flash*	21.7	21.2	17.9
Claude 3.5 Haiku	23.9	15.8	19.8
Claude 3.5 Sonnet	30.9	24.4	15.3
DeepSeek-V3	37.0	22.8	15.7
Claude 3 Opus	40.3	23.1	18.4
Claude 3.7 Sonnet*	41.6	27.4	39.5
OpenAI o1-mini*	48.1	31.7	46.7
Gemini 2.0 Pro*	74.5	61.0	53.1
OpenAI o1*	70.5	59.0	69.2
OpenAI o3-mini*	80.1	77.7	80.1
DeepSeek-R1*	80.5	75.5	78.5

PERFORMANCE GAP BETWEEN PARTIAL AND COMPLETE ACCURACY

LLMs show substantially higher Partial Path Accuracy than Complete Path Accuracy

→ The path is rarely completely completed

RESULTS: COMPLETE VS. PARTIAL PATH ACCURACY

COMPLETE PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash*	2.9	0.0	2.9
Gemini 2.0 Flash-Lite	2.9	0.0	0.0
Claude 3.5 Haiku	2.9	0.0	2.9
Claude 3.5 Sonnet	8.8	5.9	0.0
OpenAI o1-mini*	8.8	2.9	5.9
Claude 3 Opus	14.7	2.9	0.0
OpenAI o1*	14.7	11.8	14.7
OpenAI o3-mini*	14.7	14.7	14.7
Claude 3.7 Sonnet*	17.6	2.9	5.9
DeepSeek-V3	17.6	5.9	0.0
DeepSeek-R1*	17.6	11.8	14.7
Gemini 2.0 Pro*	52.9	35.3	20.6

PARTIAL PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash-Lite	16.8	15.8	13.7
Gemini 2.0 Flash*	21.7	21.2	17.9
Claude 3.5 Haiku	23.9	15.8	19.8
Claude 3.5 Sonnet	30.9	24.4	15.3
DeepSeek-V3	37.0	22.8	15.7
Claude 3 Opus	40.3	23.1	18.4
Claude 3.7 Sonnet*	41.6	27.4	39.5
OpenAI o1-mini*	48.1	31.7	46.7
Gemini 2.0 Pro*	74.5	61.0	53.1
OpenAI o1*	70.5	59.0	69.2
OpenAI o3-mini*	80.1	77.7	80.1
DeepSeek-R1*	80.5	75.5	78.5

PERFORMANCE VARIES ACROSS LLMS

→ Some achieve > 70% Partial Path Accuracy, other < 30%.

RESULTS: FEW-SHOT VS. ONE-SHOT VS. ZERO-SHOT

COMPLETE PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash*	2.9	0.0	2.9
Gemini 2.0 Flash-Lite	2.9	0.0	0.0
Claude 3.5 Haiku	2.9	0.0	2.9
Claude 3.5 Sonnet	8.8	5.9	0.0
OpenAI o1-mini*	8.8	2.9	5.9
Claude 3 Opus	14.7	2.9	0.0
OpenAI o1*	14.7	11.8	14.7
OpenAI o3-mini*	14.7	14.7	14.7
Claude 3.7 Sonnet*	17.6	2.9	5.9
DeepSeek-V3	17.6	5.9	0.0
DeepSeek-R1*	17.6	11.8	14.7
Gemini 2.0 Pro*	52.9	35.3	20.6

PARTIAL PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash-Lite	16.8	15.8	13.7
Gemini 2.0 Flash*	21.7	21.2	17.9
Claude 3.5 Haiku	23.9	15.8	19.8
Claude 3.5 Sonnet	30.9	24.4	15.3
DeepSeek-V3	37.0	22.8	15.7
Claude 3 Opus	40.3	23.1	18.4
Claude 3.7 Sonnet*	41.6	27.4	39.5
OpenAI o1-mini*	48.1	31.7	46.7
Gemini 2.0 Pro*	74.5	61.0	53.1
OpenAI o1*	70.5	59.0	69.2
OpenAI o3-mini*	80.1	77.7	80.1
DeepSeek-R1*	80.5	75.5	78.5

FEW-SHOT ADVANTAGE

Few-shot typically outperforms one-shot and zero-shot approaches,

→ Example demonstrations effectively guide spatial reasoning tasks

RESULTS: REASONING

COMPLETE PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash*	2.9	0.0	2.9
Gemini 2.0 Flash-Lite	2.9	0.0	0.0
Claude 3.5 Haiku	2.9	0.0	2.9
Claude 3.5 Sonnet	8.8	5.9	0.0
OpenAI o1-mini*	8.8	2.9	5.9
Claude 3 Opus	14.7	2.9	0.0
OpenAI o1*	14.7	11.8	14.7
OpenAI o3-mini*	14.7	14.7	14.7
Claude 3.7 Sonnet*	17.6	2.9	5.9
DeepSeek-V3	17.6	5.9	0.0
DeepSeek-R1*	17.6	11.8	14.7
Gemini 2.0 Pro*	52.9	35.3	20.6

PARTIAL PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash-Lite	16.8	15.8	13.7
Gemini 2.0 Flash*	21.7	21.2	17.9
Claude 3.5 Haiku	23.9	15.8	19.8
Claude 3.5 Sonnet	30.9	24.4	15.3
DeepSeek-V3	37.0	22.8	15.7
Claude 3 Opus	40.3	23.1	18.4
Claude 3.7 Sonnet*	41.6	27.4	39.5
OpenAI o1-mini*	48.1	31.7	46.7
Gemini 2.0 Pro*	74.5	61.0	53.1
OpenAI o1*	70.5	59.0	69.2
OpenAI o3-mini*	80.1	77.7	80.1
DeepSeek-R1*	80.5	75.5	78.5

(* indicates models with reasoning capabilities)

REASONING CAPABILITIES

often correlate with better performance

→ LLMs with *reasoning* capabilities often outperform *non-reasoning* LLMs.

RESULTS: REASONING

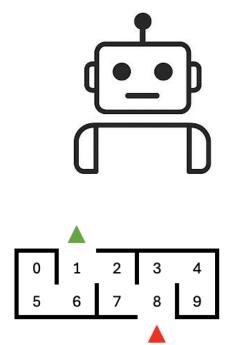
COMPLETE PATH ACCURACY (%)

Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash*	2.9	0.0	2.9
Gemini 2.0 Flash-Lite	2.9	0.0	0.0
Claude 3.5 Haiku	2.9	0.0	2.9
Claude 3.5 Sonnet	8.8	5.9	0.0
OpenAI o1-mini*	8.8	2.9	5.9
Claude 3 Opus	14.7	2.9	0.0
OpenAI o1*	14.7	11.8	14.7
OpenAI o3-mini*	14.7	14.7	14.7
Claude 3.7 Sonnet*	17.6	2.9	5.9
DeepSeek-V3	17.6	5.9	0.0
DeepSeek-R1*	17.6	11.8	14.7
Gemini 2.0 Pro*	52.9	35.3	20.6

PARTIAL PATH ACCURACY (%)

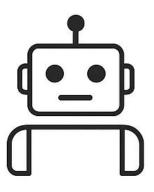
Model	few-shot	one-shot	zero-shot
Gemini 2.0 Flash-Lite	16.8	15.8	13.7
Gemini 2.0 Flash*	21.7	21.2	17.9
Claude 3.5 Haiku	23.9	15.8	19.8
Claude 3.5 Sonnet	30.9	24.4	15.3
DeepSeek-V3	37.0	22.8	15.7
Claude 3 Opus	40.3	23.1	18.4
Claude 3.7 Sonnet*	41.6	27.4	39.5
OpenAI o1-mini*	48.1	31.7	46.7
Gemini 2.0 Pro*	74.5	61.0	53.1
OpenAI o1*	70.5	59.0	69.2
OpenAI o3-mini*	80.1	77.7	80.1
DeepSeek-R1*	80.5	75.5	78.5

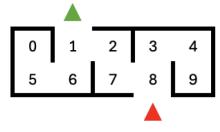
(* indicates models with reasoning capabilities)

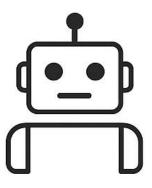

REASONING CAPABILITIES

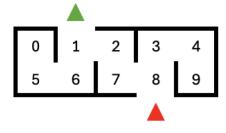
often correlate with better performance

→ LLMs with *reasoning* capabilities often outperform *non-reasoning* LLMs.

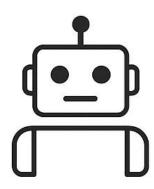


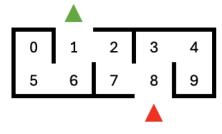

Current LLMs still do not exhibit full consciousness


- Current LLMs still do not exhibit full consciousness
- Partial and complete path accuracies indicate proximity to consciousness characteristics



- Current LLMs still do not exhibit full consciousness
- Partial and complete path accuracies indicate proximity to consciousness characteristics
- Full maze solutions (human-comparable) are needed to claim consciousness-related behavior





- Current LLMs still do not exhibit full consciousness
- Partial and complete path accuracies indicate proximity to consciousness characteristics
- Full maze solutions (human-comparable) are needed to claim consciousness-related behavior

Partial solutions show potential, but gaps remain

Conclusion

— Systematic testing needed to identify consciousness-like behaviors

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show **partial fulfillment** of consciousness characteristics

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance
- Few-shot prompting improves spatial reasoning and navigation

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance
- Few-shot prompting improves spatial reasoning and navigation
- Reasoning capabilities correlate with better performance

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance
- Few-shot prompting improves spatial reasoning and navigation
- Reasoning capabilities correlate with better performance
- Current LLMs do **not** exhibit **full consciousness**

Conclusion

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance
- Few-shot prompting improves spatial reasoning and navigation
- Reasoning capabilities correlate with better performance
- Current LLMs do not exhibit full consciousness

Future Work

Extend Maze Test to **more** complex scenarios

Conclusion

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance
- Few-shot prompting improves spatial reasoning and navigation
- Reasoning capabilities correlate with better performance
- Current LLMs do not exhibit full consciousness

- Extend Maze Test to more complex scenarios
- Test additional LLMs and more samples in few-shot

Conclusion

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance
- Few-shot prompting improves spatial reasoning and navigation
- Reasoning capabilities correlate with better performance
- Current LLMs do not exhibit full consciousness

- Extend Maze Test to more complex scenarios
- Test additional LLM architectures and more samples
- Explore multimodal and embodied input for richer evaluation

Conclusion

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance
- Few-shot prompting improves spatial reasoning and navigation
- Reasoning capabilities correlate with better performance
- Current LLMs do not exhibit full consciousness

- Extend Maze Test to more complex scenarios
- Test additional LLM architectures and more samples
- Explore multimodal and embodied input for richer evaluation
- Develop benchmarks for other consciousness characteristics

Conclusion

- Systematic testing needed to identify consciousness-like behaviors
- Performance varies across LLMs
- LLMs show partial fulfillment of consciousness characteristics
- Maze Test reveals gaps in complete path performance
- Few-shot prompting improves spatial reasoning and navigation
- Reasoning capabilities correlate with better performance
- Current LLMs do not exhibit full consciousness

- Extend Maze Test to more complex scenarios
- Test additional LLM architectures and more samples
- Explore multimodal and embodied input for richer evaluation
- Develop benchmarks for other consciousness characteristics
- Investigate learning and adaptation over time

THANK YOU

Tim Schlippe **▼** tim.schlippe@iu.org