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Abstract—Anomaly detection in spacecraft telemetry is critical
for the success and safety of space missions. Traditional methods
often rely on forecasting and threshold techniques to identify
anomalies [1]-[5]. This paper presents a comprehensive compar-
ison of traditional forecast-based anomaly detection against two
innovative classification methods, including a direct classification
and an image classification through Gramian Angular Field
(GAF) transforms [6], which have only been analysed in other
domains but not for spacecraft anomaly detection. All our
investigated systems leverage deep learning architectures and
use the popular real SMAP/MSL spacecraft data from [2]. Our
findings suggest that direct classification provides a marginal
but statistically significant improvement in anomaly detection
over traditional methods. However, image classification, while
less successful, offers promising directions for future research.
The study aims to guide the selection of appropriate anomaly
detection techniques for spacecraft telemetry and contribute to
the advancement of automated monitoring systems in space
missions.

Index Terms—anomaly detection, time series classification,
image classification

I. INTRODUCTION

The enduring challenge to maintain the operational integrity
of spacecraft hinges on the timely and precise detection of
anomalies within their complex systems [1]-[5]. As mis-
sions grow in duration and complexity, traditional methods
of monitoring have met with “intractable” challenges [7] that
necessitate innovative approaches, particularly with regard to
spacecraft anomaly detection [1]. Our work delves into the
domain of anomaly detection in spacecraft time series data, an
area undergoing active study and pivotal to the advancement
of space mission safety and efficiency [8].

With a focus on deep learning architectures, our research
embarks on a comparative analysis of anomaly detection
in spacecraft telemetry, evaluating their efficacy and paving
the way for a paradigm shift from conventional forecast-
ing & threshold-based systems [1]-[5] to more nuanced,
context-aware techniques whereby the deep learning system
can identify the anomalous cases in a direct time series clas-
sification (direct classification) without relying on an operator-
defined threshold. While direct classification for anomaly
detection is an active area of research in other domains [9],
[10], there has not been an analysis of direct classification for
anomaly detection in spacecraft telemetry.
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Additionally, our exploration of image transform techniques
through GAF transforms [6] on the time series data of space-
craft telemetry (image classification) presents a novel intersec-
tion of methodologies with the potential to redefine anomaly
detection strategies in spacecraft systems by extending work
on GAFs for anomaly detection in other domains [11], [12].

We build on our previous paper [13], in which we com-
pared 13 deep learning architectures when used for spacecraft
anomaly detection using forecasting & threshold against a
benchmark dataset provided by [2]. Now we extend the investi-
gation by comparing the forecasting & threshold results of [13]
against the corresponding results from direct classification and
image classification. We share our code with the research
community in our GitHub repository'.

II. RELATED WORK

This section discusses related work and concepts upon
which we base our study. In particular, the different approaches
to anomaly detection are outlined and discussed.

A. Data for spacecraft anomaly detection

Modern spacecraft have many thousands of telemetry chan-
nels? [4], and this “huge” [14] amount of data is more than
can be monitored by human operators. Within these channels,
actual instances of anomalies are rare. By design a spacecraft
is a robust machine, fault tolerant and extensively tested to
ensure that anomalies do not occur [15]. For example, a study
of seven different spacecraft over more than a decade yielded
fewer than 200 critical anomalies [16].

Spacecraft anomaly detection is a particularly challenging
field due to the sparsity of publicly available datasets for
training. Indeed, of all the studies listed in our work, only [2]
make the data available, and even then with implementation-
specific details hidden through scaling and normalisation. This
has led to their dataset becoming a benchmark for further
studies, such as [4], [13], [17], [18]. We note there are some
well-documented drawbacks with the dataset [19], but as the
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2Terminology: a telemetry channel consists of one or more telemetry
parameters containing information about a spacecraft system. The value of a
parameter at a given time is a sample. These samples are taken as data points
by the deep learning models.
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benchmark for some many other works, it will be acceptable
given the comparative nature of this study. Consequently,
we also used the “SMAP/MSL” dataset from [2] in our
experiments.

The SMAP/MSL dataset comprises of 82 telemetry
channels taken from the Soil Moisture Active Passive
(SMAP) [20] spacecraft and “Curiosity” Mars Science Lab-
oratory (MSL) [21] spacecraft. The data has been scaled
from between (—1,1) and “Channel IDs are also anonymized,
but the first letter gives indicates the type of channel (P =
power, R = radiation, etc.). Model input data also includes
one-hot encoded information about commands that were sent
or received by specific spacecraft modules in a given time
window?. This results in a collection of 82 multivariate
telemetry channels, with around 100 labelled anomalies in total
across all channels. Each telemetry channel is a multivariate
time series of one target parameter and additional parameters
to be used as contextual information. The value of the target
parameter is the time series to be forecast, in which anomalies
are to be detected.

As part of the anonymization performed on the SMAP/MSL
dataset, the timing information has been removed by the
authors. It is therefore unknown what period is represented by
the given data. It is not possible to overlay or combine multiple
telemetry channels as we cannot assume any two telemetry
channel share a comparable time base.

B. Forcasting & threshold

Forecasting & threshold is one of the most common ap-
proaches for anomaly detection. As illustrated in Fig. 1,
the model forecasts a number of time steps based on the
previous timesteps and learned model. The forecasted values
are compared to observed values to determine how anomalous
the observed values are. This requires the model to learn
normal values by training (usually semi-supervised) on normal
observed data. Anomalies are then identified by the distance
between the forecast values differing from the actual values
by some threshold. AutoRegressive Integrated Moving Aver-
age (ARIMA) is a statistical model used for forecasting time
series data, combining autoregressive (AR), differencing (I),
and moving average (MA) components to capture various
temporal structures and trends in the data [22]. Telemanom [2]
and DeepAnT [23] are both deep learning forecasters, using
Long Short Term Memories (LSTM) and Convolutional Neural
Networks (CNN) respectively, to learn the normal behaviour
of the data. As multivariate models they are particularly suited
to spacecraft anomaly detection.

In Fig. 1, the blue plot “Actual Data” represents one
parameter within a telemetry channel, the input data. The
orange plot “Forecast Data” is the prediction output of some
regression model, previously trained on normal data. Where
there is a divergence between the two values at a given time
point, greater than the defined threshold, an error is determined
and an anomaly declared. Superimposed on the plot is an
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indication of anomaly sequences containing multiple error
points (collective anomalies), and the error threshold above

and below the forecast values.
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Fig. 1: Anomaly detection with forcasting & thresold

Whilst effective, forecasting & threshold relies on the selec-
tion of some threshold value beyond which the construction
error is considered anomalous. For example, [2] propose a
“unsupervised and nonparametric anomaly thresholding ap-
proach” where the anomaly detector dynamically learns the
error value corresponding to “anomaly” for a particular time
series. In their work, for each telemetry channel, they train a
different forecasting & threshold model.

There have been very many studies on a wide range of mod-
els for time series anomaly detection. [24] mention 158 models
as of 2022; no doubt the numbers have increased since. A
comprehensive comparison of approaches is given in [25].
Over half of the models considered in [25] are for univariate
data, in spacecraft telemetry terms: single parameter. As shown
earlier, spacecraft data is tightly coupled with context and
correlation between parameters—a multivariate approach is
required. This excludes some popular statistical-based time
series forecasting methods like ARIMA [26].

C. Direct classification

While forecasting & threshold and related approaches have
their merits, it often requires manual tuning of thresholds
and assumes a certain structure in the data, which may not
always hold true. Furthermore, it relies on the accuracy of the
forecasting model, where any imprecision can lead to false
alarms or missed anomalies. Rather than simply learning the
normal data behaviour, the deep learning model should be able
to learn the implied thresholds also, without the manual tuning
that threshold-based systems generally require.

Instead of forecasting future values, direct classification
employs classifiers to label each time point or window of
the series directly as normal or anomalous. With the advent
of deep learning, models like CNNs and LSTMs have shown
significant promise in handling time series data with classifica-
tion [27]-[29]. These models capture intricate patterns and de-
pendencies in the data without assuming any explicit structure,
offering a more flexible and often more accurate alternative to



the traditional approach. By using direct classification, one
can bypass the potential pitfalls of forecasting inaccuracies
and threshold tuning [30]. Capturing the temporal dynamics
of time series is a challenging task [31]. But studies have
shown that is it possible for CNN [32] and recurrent neural
network (RNN) [33] classifiers. The use of direct classification
specifically for anomaly detection is an area of active research,
such as [28], [34]. Our study is, to the best of our knowledge,
the first to present it in the context of telemetry anomalies,
that is, of the time series data reporting the spacecraft health.

D. Image classification

Image classification in the context of anomaly detection
means that the time series data is first transformed into an
image and then an image classification is applied to classify
the time series expressed as image into normal or anomalous.

Neural networks, particularly CNNs, perform well at im-
age recognition [35], especially in the anomaly detection
domain [36]. [6] and [37] propose a novel method for im-
age classification of time series data. A variety of transforma-
tions are examined in [38]. The particular transformation [6],
[37], [38] applied is the Gramian Angular Field (GAF) [39].
[40] presents a detailed and thorough demonstration of GAF’s
core concepts and mathematical underpinnings.

GAF has two innovations [37]: Firstly, the 1-dimensional
time series data is encoded into two dimensions through
projection into a polar coordinate frame. Essentially, the time
is now expressed as the radius r whilst angle 6 represents the
value. The second innovation is the use of the Gram matrix
to preserve “the temporal dependency. Since time increases
as the position moves from top-left to bottom-right, the time
dimension is encoded into the geometry of the matrix” [40].
Thus, the time series is encoded in a 2-dimensional image.
Fig. 2 demonstrates the process with simulated data, showing
GAFs for normal and anomalous time series. Fig. 2a shows
how time series without anomalies are encoded into polar
representation, and from there to a GAF. Fig. 2b illustrates
the effect of a time series anomaly on the computed GAF,
visible primarily on the bottom-left corner of the transformed
image as a discontinuity in the pattern.

[41] applied the GAF transformation to financial forecast-
ing, a time series problem, whereas [42] demonstrated the use
of the GAF transformation to perform anomaly detection. To
the best of our knowledge, we are the first to apply GAFs in
the domain of spacecraft anomaly detection, such that it can
classify anomalous time series.

III. EXPERIMENTAL SETUP

This section details the implementation of our experiments
to compare the performance of direct classification and image
classification against the forecasting & threshold approach
which performed best in [13].
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Fig. 2: GAFs for normal and anomalous time series

A. Data preparation

As described in section II-A, we used the SMAP/MSL
dataset* from [2] to train and test forecasting & thresh-
old, direct classification and image classification systems for
anomaly detection in spacecraft telemetry. The dataset is
extremely imbalanced. Considering only the data partition
containing anomalies, the proportion of anomaly vs. normal
data points ranges from 0.4% to 50%, with a median value
of around 6%. It should also be borne in mind that this is a
curated dataset which has been focussed on known anomalies,
whereas in a real-world use case there could be years of
normal data preceding an anomaly occurrence. A 6% anomaly
rate over the course of a year would represent nearly 22 days
of anomalies, which is far worse than generally observed [16].

Unfortunately, the default splits from [2] are not suitable
for the classification experiments—the “train” data partition
contains no anomalies from which to learn both normal and
anomalous classes. Therefore, the original “test” partition,
containing anomalies, needs to be used but split such that
there are a (roughly) even number of anomalies in each set.
We performed the split by finding the mid-point between
anomalies such that an even number of anomalies were on
either side of the split point. Not all telemetry channels
contained more than one anomaly (one contained none at all),
resulting in the number of telemetry channels available for
the classification experiments being reduced. Table I details
the telemetry channels remaining after splitting (channels with
fewer than two anomalies were discarded), along with the
dimensions of the datasets as N parameters x M samples.
Ultimately, 10 channels remain for SMAP and 6 for MSL, the
majority with just one anomaly in each partitioned dataset.

No channel has more than two anomalies in the training
dataset, while all channels have exactly one anomaly in the

“https://s3-us-west-2.amazonaws.com/telemanom/data.zip



test dataset (Table I). This represents quite a challenge for a
classifier to learn. However, in the context of spacecraft data
this is not unusual—anomalies are by their nature rare: “/—10
anomalies reported per spacecraft per year” reported by [43].
Image classification and direct classification rely on “win-
dowed” time series data, that is, they classify discrete se-
quences rather than individual data points. Correct selection of
the window size is critical to capturing the underlying patterns
and dynamics of the data [44]-[46]. Across all telemetry
channels, the average anomaly length is around 240 samples.
Initial investigations suggested that a window size of 64,
approximately one quarter of the average anomaly size, was
suitable for both direct classification and image classification
experiments. Table I also shows the number of windows per
telemetry channel, with a window length of 64 samples.

TABLE I: Number of anomalies, samples and windows in
training and test datasets

Channel | Training Test

| Anom. [ Samp. [ Wind. | Anom. [ Samp. | Wind.
SMAP
E-1 1 26 x 5320 84 1 26 x 3196 50
E-12 1 26 x 5330 84 1 26 x 3182 50
E-11 1 26 x 5332 84 1 26 x 3182 50
E-10 1 26 x 5325 84 1 26 x 3180 50
E-13 2 26 x 6044 95 1 26 x 2596 41
G-7 2 26 x 6330 99 1 26 x 1699 27
P-1 2 26 x 4157 65 1 26 x 4348 68
P-4 2 26 x 3560 56 1 26 x 4223 66
T-1 1 26 x 5224 82 1 26 x 3388 53
T-3 1 26 x 3690 58 1 26 x 4889 77
Total 14 | 26 x 50312 791 10 | 26 x 33883 532
MSL
C-1 1 56 x 1425 23 1 56 x 839 14
C-2 1 56 x 965 16 1 56 x 1086 17
F-7 2 56 x 3057 48 1 56 x 1997 32
P-11 1 56 x 1561 25 1 56 x 1974 31
T-13 1 56 x 1345 22 1 56 x 1085 17
T-9 1 56 x 850 14 1 56 x 246 4
Total 9 | 56 x 12058 193 8 56 x 8516 137

B. Evaluation Metrics

Evaluation metrics frequently employed to measure
anomaly detection systems’ performance capabilities are the
number of False Positive (FP) (“events” incorrectly detected
as anomalous that were actually normal), False Negative (FN)
(the anomalous parts of the signal incorrectly annotated as
normal by the algorithm), and True Positive (TP) (the anoma-
lous instances correctly detected by the algorithm) that are
recorded. True negatives are not reported, as they do not form
a part of the F1 calculation and are not relevant to a per-
anomaly metric.

Temporal features of time series in which anomalies occur
are not recognised by such conventional per-sample measures
as F-score [47], [48]. Most anomalies, especially the ma-
jority of anomalies in satellite telemetry, are often continu-
ous sequences of correlated data. A full treatment of these
metrics, and potential pitfalls, are given in [49] and [50].
The Telemanom study by [2] adopts the approach of “Per-
anomaly Precision and Recall”, and subsequently per-anomaly
F1 score. This is illustrated in Fig. 3.
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Fig. 3: Per-anomaly scoring

The concept is to treat the whole anomaly range as a
single instance rather than counting each data point (sample)
separately. That is, if at least one sample from the predicted
sequence overlaps at all with the true anomaly sequence, the
whole predicted range is considered part of the single TP. This
is particularly important when using a windowed approach, as
a true anomaly can span multiple windows. Fig. 3 show three
cases: FN when there is a true anomaly but no corresponding
detection; TP when the predicted anomaly range overlaps in
some way with a true anomaly, and FP when the prediction
does not overlap with any anomalous samples. Neighboring
predictions are merged into a single prediction.

This concept has the advantage of being relatively simple
to implement and requires no tuning. Furthermore, as we used
the SMAP/MSL dataset from [2], we also adopted the same
per anomaly evaluation metrics (TP, FP, FN, F1 score) for our
experiments.

A flaw with the per-anomaly F1 score metric is that if a
model simply predicts every data point as an anomaly (all-
anomaly prediction), then it would be counted as a single
TP, leading to a 100% F1 score, illustrated in Fig. 4. This
affected two channels in the image classification experiments.
Consequently, we excluded their scores from the results.

Predictions
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Time

Fig. 4: Per-anomaly scoring with all-anomaly prediction



C. Forecasting and threshold

In our previous paper [13], we extended the “Telemanom”
implementation5 of [2], which relied on an LSTM-based
model to (1) provide the forecasted data points and (2) assess
those data points for being anomalous by a novel non-
parametric thresholding mechanism. We analysed 13 deep
learning architectures for forecasting & threshold, replacing
the LSTM-based forecaster from [2], while retaining the
thresholding mechanism. The best performing model was
XceptionTimePlus, a CNN-based model originally imple-
mented as XceptionTime [51] from the tsai time series
analysis framework [52]. Following the approach of [2], we
trained one model per telemetry channel (one-model-per-
channel approach).

In this study, we evaluate the best performing forecast-
ing & threshold system from our previous paper [13] on our
new test set, which is shown in Table I, and compare it to
the best direct classification and image classification systems.
Again, we followed the one-model-per-channel approach.

D. Direct classification

For the implementation of direct classification we used
XceptionTimePlus, the tsai [52] implementation of the
XceptionTime model [51], with the parameters that were
optimal in our previous study on the SMAP/MSL dataset [13].
XceptionTime has also been shown to be the best performing
model in other (non-spacecraft related) anomaly detection
studies [53], [54] and is able to deal with the multivariate
telemetry channels of the SMAP/MSL dataset, thus it is a good
fit for our study. We created and ran direct classification within
the Python time series classification framework tsai [52],
running within a Google Colab environment [55] configured
to use a T4 GPU [56].

Furthermore, we elaborated a classification pipeline (Fig. 5)
that instantiates the selected loss function, optimiser and
weights, creates the deep learning model, and partitions the
datasets into windows according to the provided window size
parameters, as discussed in Section III-A. This performs the
classification and returns the results (TP, FP, FN, F1 score).
In addition to the direct classification experiments, we used
this pipeline for the image classification experiments having a
“transform” stage added.

E. Image classification

Image encoding of the time series data has the potential to
perform well in a classification task, by using image classifiers
after transforming the time series data into images [27], [38].
We use the pyts [57] framework to perform the GAF trans-
formation, as part of the pipeline described in Section III-D.
This transformation step is represented by the green box in
Fig. 5.

The GAF transformation process described in Section II-D
is suitable only for univariate (single parameter) data, whereas

Shttps://github.com/khundman/telemanom

image classification

Fig. 5: Direct and image classification experiment pipeline

the SMAP/MSL dataset, and spacecraft telemetry in gen-
eral, is predominantly multivariate (multiple parameters). The
relationships between these multiple parameters defines the
context of the spacecraft and is critical to understanding the
anomalous behaviour against the backdrop of other contem-
poraneous spacecraft activity. Consequently, the transformer
creates a “stack” of GAF images (such as in Fig. 2), one per
spacecraft parameter, which is then fed through the rest of the
classification pipeline providing a 224 x 224 x x image, where
z is the number of parameters within the data channel. We note
that pyts does support a multivariate image transform, based
on “recurrence plots” [58]. However, our initial experiments
with this approach did not produce good results (zero anomaly
detections) so was dropped in favour of the GAF pipeline
described above.

The deep learning model XceptionTimePlus which we use
for direct classification, as described in Section III-D, is not
suited to image classification as the number of dimensions is
greater than the 1-dimensional time series the models accept
(images being 2-dimensional). However, the t sai framework
provides an implementation of the CNN-based ResNet34 [59],
[60] called xResNet34 which is better suited to an image clas-
stfication task. This image classification model provides state-
of-the-art performance and is used in many recent works such
as [61]-[63].

We ran the image classification experiments starting with an
untrained xResNet34 model and pre-trained xResNet34 model
from the PyTorch [64] collection. We trained the untrained
model and fine-tuned the pre-trained model using the pipeline
described in Fig. 5. To differentiate the trained and fine-tuned
models, the latter is styled “xResNet34 fine-tuncd)”- The number
of samples available (given in Table I) is barely sufficient for
the training of the untrained model [65], so we anticipated that
the fine-tuned model would be superior.

We chose 224 x 224 for the transformed image size for



two reasons: Firstly, this is a standard image size in the
literature [66]-[68], and has been shown to generally perform
well compared to larger or smaller images [69]. Secondly, it
is the resolution on which the xResNet34(fnc-unedy model is
originally trained [70].

IV. RESULTS

In this section, we will present our results of the experiments
in time series anomaly classification. We will report the perfor-
mances of forecasting & threshold, direct classification, and
image classification, considering the per-anomaly F1 score,
TP, FP and FN, as described in Section III-B.

To enable a fair comparison taking into account that the
telemetry channels are of completely different lengths, we do
not report the average of the individual telemetry channels’
F1 scores as overall F1 scores for the SMAP spacecraft
and MSL spacecraft and the fotal F1 score for the complete
SMAP/MSL dataset in Table II and Table III, as is done
in other machine learning use cases with balanced data. In
contrast, we computed the overall and fotal Fl-score based
on the total count of TP, FP, and FN of all corresponding
telemetry channels, reporting a generalised behaviour of the
anomaly detection approaches.

A. Forcasting & threshold vs. direct classification

Table II compares the performances of forecasting & thresh-
old and direct classification across the channels of the SMAP
and MSL spacecraft. Overall, the F1 score of direct classifi-
cation is 4% (relative) higher than the F1 score of forecast-
ing & threshold (54.5% vs. 52.2%). The Wilcoxon Signed-
Rank test [71] indicates that there is a significant large dif-
ference between forecasting & threshold (Mdn=0, n=16) and
direct classification (Mdn=100, n=16), where Z=2.8, p=0.005,
r=0.9.

However, the number of TP (correctly detected anomalies)
is 50% (relative) higher than with forecasting & threshold
(9 vs. 6). The number of FP (falsely detected anomalies) is
11 times greater (11 vs. 1) with direct classification.

Comparing the F1 scores of SMAP and MSL, we see that
forecasting & threshold outperforms by 18% (relative) for
SMAP (70.6% vs. 60.0%), whereas the reverse is true for
MSL, where only direct classification (48%) was able to detect
any anomalies.

B. Image classification: Re-training vs. fine-tuning

As shown in Table III, overall the image classification
performed poorly in terms of F1 score for both xResNet34
and xResNet34 fine-tunedy (19.5%, 26.3%), with a high number
of FP (86, 68) and lower number of TP (11, 13). The relative
difference between xResNet34 and xResNet34fine-tuned) 15 35%.
The number of samples with non-zero differences (3) is
too small to perform a Wilcoxon Signed-Rank test, so we
performed instead a Sign Test [72]; the z-value is 1, the p-
value is 0.3. The result is not significant at p < 0.05.

This shows that differences between xResNet34 and
xResNet34 fine-unedy Were negligible, which was unexpected.

However, looking at the general number of TP and FP as
well as the F1 scores of SMAP and MSL demonstrates that
xResNet34 fine-unedy performs better. Only the general number
of FN is the same in both models. Consequently, we used
xResNet34 fine-wneq) for comparison to direct classification in
the next Section IV-C.

C. Direct classification vs. image classification

The total F1 score of image classification with
xResNet34 (fine-tunedy  (26.3%) is around half that of
direct classification (54.5%). Direct classification produces a
slightly greater number of TP (15 vs. 13), a smaller number
of FP (24 vs. 68), and a 5 times lower number of FN
(1 vs. 5). The Wilcoxon Signed-Rank test indicates that there
is a significant large difference between direct classification
(Mdn=100, n=16) and image classification (Mdn=25.4, n=16),
where Z=-2, p=0.050, r=-0.5.

For MSL, only 4 channels are better predicted in terms of
F1 score with image classification: C-2, F-7, P-11, T-13. No
telemetry channels are better predicted for SMAP with im-
age classification. However, direct classification shows nearly
three times fewer FP (24 vs. 68) than image classification.

V. DISCUSSION

This section discusses the suitability of our novel di-
rect classification and image classification approaches for
spacecraft anomaly detection, and difficulties encountered.

A. Suitability for spacecraft anomaly detection

Following the approach of [2], throughout this work we
have trained one model per telemetry channel. Modern deep
learning models are expensive to train, in terms of compu-
tation. Some of the models have taken multiple hours to
train to completion (Section V-D), which limits the amount
of progress that can be made when iterating through different
implementations and approaches.

Image classification particularly brings a large overhead to
the processing time. For practical reasons the image transforms
are performed “on the fly” as part of the data processing
pipeline, window by window. This reflects the “stream” nature
of spacecraft data. In an operational use case, such an anomaly
detector would be expected to analyse the incoming spacecraft
telemetry in a reasonable time to produce actionable results.
This does not necessarily have to happen in real time, but
should be considered in a real-world implementation.

The per-anomaly F1 score was higher in direct classification
than in forecasting & threshold. However, in direct classifica-
tion the number of FP, i.e. false alarms, increased by a factor
of 20 compared to forecasting & threshold [2] in particular
state that avoiding FP is important for spacecraft anomaly
detection. Moreover, [3] agree that FP are undesirable to an
operational mission. Given the relatively high proportion of
FP to TP in both direct classification and image classification,
we must consider both approaches are promising but not yet
suitable for spacecraft anomaly detection without further work.



TABLE II: Forecasting & threshold vs. direct classification

TABLE III: Image classification

Forecasting & Threshold Direct classification Image classif. Image classif.
xResNet34 xResNet34 fine-tuned)
Channel [| TP [FP [FN [ F1 % TP [ FP [ FN [ F1 % Channel TP [ FP [ FN [ F1 % TP [ FP [ FN [ F1 %
SMAP SMAP
E-1 1 0 0 100.0 1 0 0 100.0 E-1 0 0 1 0.0 0 0 1 0.0
E-12 1 0 0 100.0 0 2 1 100.0 E-12 0 0 1 0.0 0 0 1 0.0
E-11 1 0 0 100.0 1 0 0 100.0 E-11 0 0 1 0.0 0 0 1 0.0
E-10 1 0 0 100.0 1 0 0 100.0 E-10 0 0 1 0.0 0 0 1 0.0
E-13 0 0 1 0.0 1 6 0 14.3 E-13 1 15 0 11.8 0 0 1 0.0
G-7 1 0 0 100.0 1 0 0 100.0 G-7 1 0 0 100.0 1 0 0 100.0
P-1 0 0 1 0.0 1 3 0 25.0 P-1 1 16 0 11.1 1 16 0 11.1
P-4 0 0 1 0.0 1 0 0 100.0 P-4 1 0 0 100.0 1 0 0 100.0
T-1 0 1 1 0.0 1 0 0 100.0 T-1 1 36 0 5.26 1 36 0 5.26
T-3 1 0 0 100.0 1 0 0 100.0 T-3 0 0 1 0.0 1 0 0 100.0
Overall 6 1 4 70.6 9 | 11 1 60.0 Overall 5| 67 5 12.2 5| 52 5 14.9
MSL MSL
C-1 0 0 1 0.0 1 0 0 100.0 C-1 1 3 0 40.0 1 3 0 40.0
C-2 0 0 1 0.0 1 6 0 14.3 C-2 1 7 0 222 1 7 0 222
E-7 0 0 1 0.0 1 3 0 25.0 E-7 1 5 0 28.6 1 5 0 28.6
P-11 0 0 1 0.0 1 1 0 50.0 P-11 1 3 0 40.0 1 0 0 100.0
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Fig. 6: Image classifier probability plots



Further analysing the telemetry channels shows that G-7—
the only “spiky” telemetry channel (usually flat with occa-
sional peaks) in the SMAP/MSL dataset—performs consis-
tently well in all our 3 analysed approaches. This suggests that
some feature or behavioural trait of spiky data makes anomaly
detection more effective for deep learning. This is perhaps
counter-intuitive, as one would expect anomalous signals to
be masked by the spiky signals. Alternatively, it may be the
case that the contextual information is particularly good at
discriminating the relevant data points against the spiky normal
signal. This shows the potential to solve difficult cases where
humans may find it difficult to differentiate anomalous from
normal data.

B. Understanding image classification performance

Whilst overall the image classification results were dis-
appointing within the details of the model outputs, there
are some interesting results which suggest there is potential
in the approach. The per-data point results illustrated in
Fig. 6 suggests there is scope for further improvement in
image classification, at least for some types of data. Each
sub-figure represents a single model and telemetry channel
pair. Individual data points are plotted on the y-axis according
to the true class, i.e. the actual or correct class label: green
for true anomalous and purple for true normal; data points
are spread vertically within the classes, so as to make the
points more visible. The model’s probability of any point being
anomalous is plotted on the x-axis. The plots can be read as
confusion matrices. The optimal case would be if all green
points, indicating an anomaly, were on the right upper corner
and all purple points, indicating the normal case, were on the
left lower corner. This visualisation allows us to explain the
behaviour of the classifiers by visualising how each data point
was classified.

The direct classification/P-11 plot (Fig. 6a) shows that
the two classes are barely separated (poor differentiation)
and FPs are present. In contrast, the image classifica-
tion/xResNet34 finc-wned)/P-11 plot (Fig. 6b) has good differ-
entiation and demonstrates that there are no FP. This case
is preferred for spacecraft operators [2], where FP increase
workload and decrease trust in the anomaly detection system.
The probability of the TP values is generally high, denoting
a high confidence in the results. In fact, image classifica-
tion/P-11 outperforms both direct classification and forecast-
ing & threshold/P-11. A similar trend is observed for C-2 and
G-7 (not plotted).

C. Discussion of limitations and challenges encountered

Our work has been limited primarily by the dataset chosen,
the SMAP/MSL dataset. Despite it being the best dataset avail-
able as described in Section II-A, there are some fundamental
difficulties associated with its use [19]. The anonymisation of
the data has removed information as to the underlying nature
of the data which precludes the use of domain knowledge to
improve the model performance. The context data is provided
as one-hot encoding of system-relevant commands. But this

almost certainly leads to loss of useful information, such as any
parameters associated to those commands and cross-coupling
effects between telemetry channels. In a real spacecraft, where
data is closely correlated [73], such context information is
critical to understanding what may be an expected event versus
a genuine anomaly.

Due to these issues with the SMAP/MSL dataset, we were
obliged to follow the one-model-per-channel approach of [2].
In future applications, we would advocate to combine many
related telemetry channels into a single model such as per
spacecraft subsystem or per data type, as demonstrated in [13].
In this way the issue of “scalability” (Section V-A) may be
reasonably addressed.

In the SMAP/MSL dataset, we have very few anomaly cases
from which the deep learning system may learn, typically
one anomaly in the training set and one in the test set,
representing a few hundred anomalous data points compared
to thousands normal. This leads to an extremely imbalanced
dataset, which despite trying specialised loss functions [74]
and weighting [75], resulted in overfitted models, indicated
by the high number of FPs.

D. Computing time for training and inference

Model training times are a critical metric for spacecraft
anomaly detection as it places an upper limit on how fre-
quently the model could be re-trained. Ideally such a model
would be retrained regularly to account for spacecraft aging
and seasonal effects. Inference time is also important because
it limits the reaction time of the spacecraft operators.

The training time of the forecasting & threshold model
in [13] was around 3 hours. The direct classification model
training time only was approximately 7 minutes. The im-
age classification model training time, which includes the GAF
transformation, was over 12 hours. This shows that an operator
can retrain the direct classification much more frequently. In
all cases the inference time was negligible, in the order of a
few tens of seconds. This demonstrates that the inference time
has no impact on the decision which model to chose. These
times are based on the computational resources described in
Section III-D.

VI. CONCLUSION

In this section, we will summarise our work and describe
possible future steps.

A. Summary of research

Our experiments show that direct classification can perform
better than the classic forecasting & threshold methods which
are the backbone of the current approaches for spacecraft
anomaly detection [1]—[4]. There is a clear difference between
the performance of direct classification between SMAP and
MSL, with SMAP performing better (60% vs. 48%). The di-
rect classification of the MSL data significantly outperformed
forecasting & threshold finding anomalies not discovered
by the latter, as illustrated in Table II. The results overall
exceed the state-of-the-art performance in recent studies [76]



and represent a new avenue for further exploration in future
studies.

Image classification did not manage to meet the same level
of performance as direct classification. Regardless, for some
channels the results show better class separation than for
direct classification (P-11, shown in Fig. 6). As spacecraft
operators are used to visually inspecting plots to identify
anomalies [1], it should not be a surprise that computer vision-
based image classification can be successful, using image
transforms to visualise the time series data. Challenges remain
to properly understand the mechanics behind the transforms
and optimise them for deep learning systems. There are two
main drawbacks to image classification: slow speed of the
transformations and a high number of FNs.

B. Future work

One possible avenue of investigation which may bear fruit
in the case of spacecraft anomaly detection is one-class
classification, which does not rely on seeing examples of
both anomalous and normal data. Since anomalies appear
rarely in spacecraft telemetry [16], [43], and well labelled
anomalies are rarer still, a one-class classifier based only on
normal data may yield better results than training a binary
classifier on very few examples. “A one-class classifier aims
at capturing characteristics of training instances, in order to
be able to distinguish between them and potential outliers to
appear” [T7]. On the other hand, “the advantages of one-class
classifiers come at a price of discarding all of the available
information about the majority class” [77], namely the context
in which the normal data occurs. Further research in this
direction would be worthwhile.

A popular method to deal with severely imbalanced data
in other fields is the use of oversampling. Oversampling ap-
proaches for time series data is an active area of research, such
as [78], [79], and [80]. These attempt to create new instances
of the minority classes whilst following the distribution of the
original signal, such that the deep learning system has more
to learn from. Unfortunately, at the time of our experiments
the implementation of the oversampling systems has not been
publicly released, so we were unable to include it in this study.
None of the literature applies these oversampling techniques
to spacecraft telemetry data however, so this would be an
interesting and useful direction for future studies.

The use of a pre-trained (fine-tuned) xResNet34 model
showed that in some cases a computer vision model can be
effective for spacecraft anomaly detection, but not in all cases.
Future work should be undertaken to establish the types and
behaviour of data benefiting a image classification approach.

In [13] we demonstrated a novel technique to apply an
unsupervised clustering algorithm on the telemetry channel
data to determine a set of “data types”, based on the shape
of the signal. The idea behind this was to apply different
shape-specific models to tailor the learning to the shape rather
than using a single model for all. This greatly improved
the results by allowing the use of an ensemble approach,
applying the best performing deep learning architecture for

that data type. It was not possible to apply the same technique
with direct classification (or image classification) due to the
reduced dataset leading to too few examples of most identified
data shapes types. However, applying a clustering approach
with our classification approaches could be investigated further
with a suitable dataset.

More work would be needed to explore different image
transforms for image classification, especially on the size of
the transformed images. We took the common 224x224 image
size popular in the literature [70]. But whether this is optimal
for the selected window size is unclear. Ultimately, as a new
approach not previously applied to the domain of spacecraft
anomaly detection, the results are encouraging and show the
utility of the system in principle for some types of data.
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